
09 July 2009 Leuven / Schlegel

servicerobotics
Autonomous Mobile Service Robots

Model Driven Software Development in
Service Robotics

Prof. Dr. Christian Schlegel

Computer Science Department

University of Applied Sciences Ulm

http://www.zafh-servicerobotik.de/ULM/index.php

http://www.hs-ulm.de/schlegel

AG Schlegel:

M.Sc. Siegfried Hochdorfer, B.Sc. Alex Lotz, B.Sc. Matthias Lutz, B.Sc. Dennis Stampfer, B.Sc. Andreas Steck

http://www.hs-ulm.de/schlegel

09 July 2009 Leuven / Schlegel

What are we doing ?
 embedded realtime and autonomous systems

- software technology / MDSD for service robotics
 probabilistic approaches

- low-cost bearing-only SLAM / SURF
- visual odometry

AG Schlegel / Ulm

09 July 2009 Leuven / Schlegel

What is this talk about ?
 not just another software framework
 not just another middleware wrapper
 we have plenty of those ...

But
 separation of robotics knowledge from short-cycled implementational

technologies
 providing sophisticated and optimized software structures to robotics

developers not requiring them to become a software expert

How to achieve this ?
 make the step from code-driven to model-driven designs
 there are open source tools useful in robotics !

Model Driven Software Development
Introduction and Motivation

09 July 2009 Leuven / Schlegel

Why is Model Driven Software Development important in Robotics ?

 get rid of hand-crafted single unit service robot systems
 compose them out of standard components with explicitly stated properties
 be able to reuse / modify solutions expressed at a model level
 take advantage from the knowledge of software engineers that is encoded in

the code transformators
 be able to verify properties (or at least provide conformance checks)

be able to address resource awareness !!
and many many more good reasons

Model Driven Software Development
Introduction and Motivation

Engineering the software development process
in robotics is one of the basic necessities
towards industrial-strength service robotic
systems

09 July 2009 Leuven / Schlegel

What is different in robotics ?

 not the huge number of different sensors and actors
 not the various hardware platforms
 not real-time requirements etc.

but

 the context and situation dependant reconfiguration of interactions
 a prioritized assignment of restricted resources to activities again depending

on context and situation

vision for the next steps in robotics:
 resource-awareness at all levels to be able to solve tasks adequately given certain

resources

Model Driven Software Development
Introduction and Motivation

09 July 2009 Leuven / Schlegel

That sounds good but give me an example ...

we made some very simple but pivotal decisions:
 granularity level for system composition:

- loosely coupled components
- services provided and required

 strictly enforced interaction patterns between components
- precisely defined semantics of intercomponent interaction
- these are policies (and can be mapped onto any middleware mechanism)
- separate component internals from externally visible behavior
 independent of a certain middleware
 enforce standardized service contracts between components

 minimum component model to support system integration
- dynamic wiring of the data flow between components
- state automaton to allow for orchestration / configuration
 ensures composability / system integration

Model Driven Software Development
Idea and Approach

09 July 2009 Leuven / Schlegel

That sounds good but give me an example ...
 execution environment

- tasks (periodic, non-periodic, hard real-time, no realtime), synchronization, resource access
 components explicitly allocate resources like processing power and communication

bandwidth from the underlying HAL
 again, can be mapped onto different operating systems

 design policy for component behavior:
- principle of locality: a component solely relies on its own resources
- example: QUERY

– maximum response time attribute of service provider
– client can only ask (attribute in request object) for faster response as guaranteed by

QoS of service provider
– server would respond with a VOID answer in case of a reject of timeline
– it is the client that then decides what is next

- example: PUBLISH/SUBSCRIBE
– service provider agrees upon QoS as soon as subscription got accepted
– again, it is a matter of policy whether this already requires hard guarantees or whether

we also accept notifications about not being able to hold the schedule

Model Driven Software Development
Idea and Approach

09 July 2009 Leuven / Schlegel

 Introduce Toolchain based on Open Architecture Ware
- fully integrated into Eclipse
- http://www.openarchitectureware.org/

 Introduce MDSD Toolchain Example
- PIM: SmartMARS robotics profile (Modeling and Analysis of Robotics Systems)
- PSM: SmartSoft in different implementations but with the same semantics !
- can be easily adapted to different profiles / profile extensions / PSMs

 Short Summary on SmartSoft [LGPL]
- http://smart-robotics.sourceforge.net/
- http://www.zafh-servicerobotik.de/ULM/en/smartsoft.php
- CORBA (ACE/TAO) based SmartSoft

– on web with various robotics components
- ACE (without CORBA) based SmartSoft

– under stress testing
– available within July / August [Linux, Windows, ...] on sourceforge

- oAW Toolchain for SmartSoft
– available within July / August on sourceforge

Model Driven Software Development
Focus Today / Workshop

http://www.openarchitectureware.org/
http://smart-robotics.sourceforge.net/

09 July 2009 Leuven / Schlegel

Model Driven Software Development
Idea and Approach

09 July 2009 Leuven / Schlegel

Model Driven Software Development
Idea and Approach

09 July 2009 Leuven / Schlegel

Model Driven Software Development
Idea and Approach

09 July 2009 Leuven / Schlegel

Model Driven Software Development
Idea and Approach

09 July 2009 Leuven / Schlegel

Model Driven Software Development
Idea and Approach

09 July 2009 Leuven / Schlegel

 Interaction Patterns
- loosely coupled communication
- independent of middleware
- accessible to MDSD

 Parameterization and configuration ports
- name / value pairs
- dynamic wiring
- reflection ?

 Abstraction of execution container
- resource access via abstraction independent of implementational technology and OS
- Tasks, Semaphore, CV, PCP, etc.
- accessible to MDSD

 State automaton inside a component
- share common states to support orchestration
- allow for individual substates beneath basic state automaton

 and many others
- authorization, encryption, etc. etc.

Model Driven Software Development
What do we need for a component model ?

09 July 2009 Leuven / Schlegel

Model Driven Software Development
Idea and Approach

09 July 2009 Leuven / Schlegel

Model Driven Software Development
Idea and Approach

09 July 2009 Leuven / Schlegel

Model Driven Software Development
Idea and Approach

09 July 2009 Leuven / Schlegel

Model Driven Software Development
Idea and Approach

09 July 2009 Leuven / Schlegel

Model Driven Software Development
Idea and Approach

09 July 2009 Leuven / Schlegel

 Communication Objects
- marshalling

 Communication Patterns
- message system beneath patterns (downward interface)

– ACE Reactor / Acceptor etc.
– CORBA
– 0NQ message system
– global variables

- no adjustment towards user (upward interface)
 Tasks etc.

- obvious, on no-realtime systems just no guarantee for periods etc.

Model Driven Software Development
Mapping onto Different Platforms

09 July 2009 Leuven / Schlegel

 already possible
- have timing parameters within communication objects as part of request to server
- server can then response with void answer in case it cannot meet the deadline

 next step
- timeout-parameters at user-interface of interaction methods

– 0 infinity / no timeout
– others timeout
– since interaction patterns are standalone entities, these timings are easily implemented

locally without server interaction (see priniciple of locality)
– have these parameters within UML component model

 next step
- deployment of components

– map ports (and their messages) onto hard real-time communication systems like
Realtime-Ethernet

– extend UML port model with period / load etc. for RMA scheduling analysis
 next step

- extend this towards general resource awareness
– tasks / RMA dependent on PSM
– interfaces to external tools like SuReal / AbsInt etc.

Model Driven Software Development
Extensions towards QoS / real-time

09 July 2009 Leuven / Schlegel

Model Driven Software Development
Example

09 July 2009 Leuven / Schlegel

Model Driven Software Development
Example

09 July 2009 Leuven / Schlegel

Model Driven Software Development
Summary and Conclusion

