
7 May 2010 SDIR V / Schlegel, Steck

servicerobotics
Autonomous Mobile Service Robots

Model Driven Software Development in
Robotics – It really works !

Prof. Dr. Christian Schlegel

Computer Science Department
University of Applied Sciences Ulm

http://www.zafh-servicerobotik.de/ULM/index.php

http://www.hs-ulm.de/schlegel

http://smart-robotics.sourceforge.net/

Siegfried Hochdorfer, Alex Lotz, Matthias Lutz, Dennis Stampfer, Andreas Steck, Jonas Brich, Manuel Wopfner

7 May 2010 SDIR V / Schlegel, Steck

What is this talk about?
 not just another software framework
 not just another middleware wrapper
 we have plenty of those ...

But
 separation of robotics knowledge from short-cycled implementational

technologies
 providing sophisticated and optimized software structures to robotics

developers not requiring them to become a software expert

How to achieve this?
 make the step from code-driven to model-driven designs
 there are open source tools, standards etc. also useful in robotics!

Model Driven Software Development
Introduction and Motivation

7 May 2010 SDIR V / Schlegel, Steck

Model Driven Software Development
Introduction and Motivation

A development process often applied in robotics ...

7 May 2010 SDIR V / Schlegel, Steck

Model Driven Software Development
Introduction and Motivation

Systematic engineering processes look different ...
... also in case of software intensive systems

7 May 2010 SDIR V / Schlegel, Steck

We need a systematic engineering approach for robotics software!

 robots are complex systems that depend on systematic engineering
 so far fundamental properties of robotic systems have not been made detailed

enough nor explicit (e.g. QoS)
 tremendous code-bases (libraries, middleware, etc.) coexist without any

chance of interoperability and each tool has attributes that favors its use

 rely, as for every engineering endeavour, on the power of models
 nowadays, robotics functionality is foremost based on software
 make the step towards MDSD

Model Driven Software Development
Introduction and Motivation

etc.

7 May 2010 SDIR V / Schlegel, Steck

What is Model Driven Software Development?

 make software development more domain related as opposed to computing
related

 it is also about making software development in a certain domain more
efficient and more robust due to design abstraction

Model Driven Software Development
Introduction and Motivation

Domain Concepts Domain Concepts

Software Technology
 Concepts

Software Technology
Concepts

mental work
of developers

http://www.voelter.de/services/mdsd.html

7 May 2010 SDIR V / Schlegel, Steck

Modelling + Formalization = Solution of all Problems?

 “the earlier the formalization, the more steps can be automated“ => is it true?
 what is about software architecture and target platform?

- need also be available in formalized form to be accessible by
transformations!

- that is exactly what is required by MDA in form of PIM and PSM
- both, the software architecture as well as the platforms are formally

described by models

Model Driven Software Development
Introduction and Motivation

Petrasch, Meinberg: Model Driven Architecture

7 May 2010 SDIR V / Schlegel, Steck

How MDSD works

 Developer develops model(s)
based on certain metamodel(s),
expressed using a DSL

 Using code generation
templates, the model is
transformed to executable code

- alternative: interpretation
 Optionally, the generated code

is merged with manually written
code

 One or more model-to-model
transformation steps may
precede code generation

Model Driven Software Development
Introduction and Motivation

http://www.voelter.de/services/mdsd.html

Metamodel

Transformer

Model

Transformer

Generated
Code

Model
Model

Model

Metamodel

Code
Generation
Templates

Transformation
Rules

Manually
written
code

o
p

ti
o

n
al

, c
an

 b
e

re
p

ea
te

d
o

p
ti

o
n

al

7 May 2010 SDIR V / Schlegel, Steck

Why is Model Driven Software Development important in robotics?

 Software development is too complex and too expensive

... because:

- there is too little reuse
- technology changes faster than developers can learn
- knowledge and practices are hardly captured explicitly and made

available for reuse
- domain experts cannot understand all the technology stuff involved in

software development

Model Driven Software Development
Introduction and Motivation

7 May 2010 SDIR V / Schlegel, Steck

Why is Model Driven Software Development important in robotics?

 get rid of hand-crafted single unit service robot systems
 compose them out of standard components with explicitly stated properties
 be able to reuse / modify solutions expressed at a model level
 take advantage from the knowledge of software engineers that is encoded in

the code transformators
 be able to verify properties (or at least provide conformance checks)

be able to address resource awareness !!
and many many more good reasons

Model Driven Software Development
Introduction and Motivation

Engineering the software development process
in robotics is one of the basic necessities
towards industrial-strength service robotic
systems

7 May 2010 SDIR V / Schlegel, Steck

Model Driven Software Development
Example / Navigation Task

7 May 2010 SDIR V / Schlegel, Steck

What is different in robotics?

 not the huge number of different sensors and actuators
 not the various hardware platforms
 not real-time requirements etc.

but

 the context and situation dependant reconfiguration of interactions
 a prioritized assignment of restricted resources to activities again depending

on context and situation

vision for the next steps in robotics:
 resource-awareness at all levels to be able to adequately solve tasks

given certain resources

Model Driven Software Development
Idea and Approach

7 May 2010 SDIR V / Schlegel, Steck

That sounds good but give me an example ...

we made some very simple but pivotal decisions while dealing with component based
systems that then proved to pave the way towards MDSD:

 granularity level for system composition:
- loosely coupled components
- services provided and required

 strictly enforced interaction patterns between components
- precisely defined semantics of intercomponent interaction
- these are policies (and can be mapped onto any middleware mechanism)
- separate component internals from externally visible behavior
 independent of a certain middleware
 enforce standardized service contracts between components

 minimum component model to support system integration
- dynamic wiring of the data flow between components
- state automaton to allow for orchestration / configuration
 ensures composability / system integration

Model Driven Software Development
Idea and Approach

7 May 2010 SDIR V / Schlegel, Steck

That sounds good but give me an example ...

 execution environment
- tasks (periodic, non-periodic, hard real-time, no realtime), synchronization, resource access
 components explicitly allocate resources like processing power and communication

bandwidth from the underlying HAL
 again, can be mapped onto different operating systems

 design policy for component behavior:
- principle of locality: a component solely relies on its own resources
- example: QUERY

– maximum response time as attribute of service provider
– client can only ask (attribute in request object) for faster response as guaranteed by

QoS of service provider
– server would respond with a VOID answer in case it rejects requested response time
– it is the client that then decides what is next

- example: PUBLISH/SUBSCRIBE
– service provider agrees upon QoS as soon as subscription got accepted
– again, it is a matter of policy whether this already requires hard

guarantees or whether we also accept notifications about not being
able to hold the schedule

Model Driven Software Development
Idea and Approach

7 May 2010 SDIR V / Schlegel, Steck

Model Driven Software Development
Idea and Approach

7 May 2010 SDIR V / Schlegel, Steck

Model Driven Software Development
/ Insertion / Technical Details /

7 May 2010 SDIR V / Schlegel, Steck

 Communication Objects
- marshalling

 Communication Patterns
- downward interface / interal

– invisible to user
– is handled by MDSD toolchain
– can be mapped onto different

middleware systems
» ACE Reactor / Acceptor etc.
» CORBA
» 0MQ message system
» global variables

- upward interface / user
– no adjustments at user visible API

 Tasks etc.
- obviously, no guarantees when mapped

onto no-realtime systems etc.

Model Driven Software Development
Idea and Approach

7 May 2010 SDIR V / Schlegel, Steck

Model Driven Software Development
SmartMDSD

7 May 2010 SDIR V / Schlegel, Steck

Model Driven Software Development
SmartMDSD

Benefits of this development process:

 systematically handle integration of systems of the complexity of
service robots and to overcome plumbing

 tools like OpenArchitectureWare, Eclipse etc. are matured enough
to be used in robotics

 there are many experienced people out there being already familiar
with the tools, can start immediately using them and can just focus
on robotics

 design patterns, best practices, approved solutions can be made
available within the code generators such that even novices can
immediately take advantage from that coded and immense
experience

 SmartSoft provides the perfect granularity for system design,
component development, composability, freedom within
components, tool support etc.

7 May 2010 SDIR V / Schlegel, Steck

MDSD
/ EMF /

Ecore-Metamodel
(based on OMG EMOF)

UML

SmartMARS
(UML-Profile)

MARTE

any other
meta-model

M3
meta-meta-model

M2
meta-model

M1
model

M0
sourcecode/
text

any other
meta-model

user-modeluser-model user-model user-modeluser-model

sourcecodesourcecode sourcecode sourcecodesourcecode

modeling tool

code generation

7 May 2010 SDIR V / Schlegel, Steck

Model Driven Software Development
/ MDSD basics /

MDSD core building blocks:
 domain analysis
 meta modelling
 model-driven generation

(and: model transformations, model-to-model, model-to-text)
 template languages
 domain-driven framework design

Are MDSD models the same as requirements / analysis models?
 they can be, but in general, they are not
 analysis / requirements models are non-computational, MDSD models are

computational
 formalizing requirements is beneficial since requirements become unambigious
 MDSD models are no “paperwork“, they are the solution which is translated into

code automatically
http://www.voelter.de/services/mdsd.html

7 May 2010 SDIR V / Schlegel, Steck

Model Driven Software Development
/ MDSD basics /

Three basic viewpoints:
 Type Model: Components, Interfaces, Data Types
 Composition Model: Instances, „Wirings“
 System Model: Nodes, Channels, Deployments

Generated stuff:
 base classes for component implementation
 build scripts
 descriptors
 remoting infrastructure
 persistence
 etc.

http://www.voelter.de/services/mdsd.html

7 May 2010 SDIR V / Schlegel, Steck

Model Driven Software Development
/ MDSD basics /

Aspect models:
 often, the described three viewpoints are not enough, additional aspects need to be

described
 these go into separate aspect models, each describing a well-defined aspect of the

system
- each of them uses a suitable DSL / syntax
- the generator acts as a weaver

 Typical examples are
- persistence
- security
- timing, QoS in general
- packaging and deployment
- diagnostics and monitoring

http://www.voelter.de/services/mdsd.html

7 May 2010 SDIR V / Schlegel, Steck

Illustration of our development process
 UML 2.0 profile for robotics component model
 covers component development, system composition, deployment
 based on standards: UML 2.0, Open Architecture Ware, Eclipse, etc.
 different runtime platforms, middleware systems etc.

Model Driven Software Development
SmartMDSD

7 May 2010 SDIR V / Schlegel, Steck

Model Driven Software Development
SmartMDSD

PIM

SmartMARS – Metamodel

(Modeling and Analysis of
 Robotics Systems)

 UML2-Profile

 platform independent
 stereotypes

• SmartComponent
• SmartTask
• SmartMutex
• SmartQueryServer
• SmartEventClient
• ...

PSM

CorbaSmartSoft
CORBA based implementation
of SmartSoft

PSI

has to be created by a
middleware expert

 UML2-Profile

 platform specific stereotypes

AceSmartSoft
ACE based implementation
of SmartSoft

M2T
oAW

xPand
check

The user space can contain
arbitrary code and libraries

The user space remains the
same independent of the
different platform specific models

Just the component hull will be
created

...
any other middleware

M2M
oAW

xTend
check

7 May 2010 SDIR V / Schlegel, Steck

What do we need within a component meta-model?

 Interaction Patterns
- loosely coupled communication
- independent of middleware
- accessible to MDSD

 Parameterization and configuration ports
- name / value pairs
- dynamic wiring
- reflection ?

 Abstraction of execution container
- resource access via abstraction independent of implementational technology and OS
- Tasks, Semaphore, CV, PCP, etc.
- accessible to MDSD

 State automaton inside a component
- share common states to support orchestration
- allow for individual substates beneath basic state automaton

 and many others
- authorization, encryption, etc.

Model Driven Software Development
Idea and Approach

7 May 2010 SDIR V / Schlegel, Steck

Model Driven Software Development
Metamodels (partial view)

7 May 2010 SDIR V / Schlegel, Steck

Model Driven Software Development
Metamodels (partial view)

7 May 2010 SDIR V / Schlegel, Steck

Model Driven Software Development
SmartMDSD

7 May 2010 SDIR V / Schlegel, Steck

Model Driven Software Development
Examples / SmartMDSD / Real-Time Task

7 May 2010 SDIR V / Schlegel, Steck

 already available
- have timing parameters within communication objects as part of request to server
- server can then response with void answer in case it cannot meet the deadline
- interface to CHEDDAR timing analysis for RMA / dependent on PSM

 next step
- timeout-parameters at user-interface of interaction methods

– 0 infinity / no timeout
– others timeout
– since interaction patterns are standalone entities, these timings are easily implemented

locally without server interaction (see principle of locality)
– have these parameters within UML component model

 next step
- at deployment of components

– map ports (and their messages) onto hard real-time communication systems where
needed (like Realtime-Ethernet)

- extend this towards general resource awareness

incrementally extend Meta-Models to cover more and more aspects of robotics

Model Driven Software Development
Extensions towards QoS / real-time

7 May 2010 SDIR V / Schlegel, Steck

Model Driven Software Development
Examples etc.

7 May 2010 SDIR V / Schlegel, Steck

 Toolchain based on Open Architecture Ware
- fully integrated into Eclipse
- http://www.openarchitectureware.org/

 MDSD Toolchain Example
- PIM: SmartMARS robotics profile (Modeling and Analysis of Robotics Systems)
- PSM: SmartSoft in different implementations but with the same semantics !
- can be easily adapted to different profiles / profile extensions / PSMs

 Short Summary on SmartSoft [LGPL]
- http://smart-robotics.sourceforge.net/
- http://www.zafh-servicerobotik.de/ULM/en/smartsoft.php
- CORBA (ACE/TAO) based SmartSoft

– on sourceforge with various robotics components and simulators etc.
– in use in research and industry

- ACE (without CORBA) based SmartSoft
– on sourceforge [Linux, Windows]
– in use in research and industry

- oAW Toolchain for SmartSoft
– on sourceforge (including Screencasts and Tutorials)

Model Driven Software Development
It is all available (LGPL) ...

7 May 2010 SDIR V / Schlegel, Steck

SmartSoft MDSD Toolchain

7 May 2010 SDIR V / Schlegel, Steck

Addendum

7 May 2010 SDIR V / Schlegel, Steck

Model Driven Software Development
/ Technical Details /

7 May 2010 SDIR V / Schlegel, Steck

Model Driven Software Development
/ Technical Details /

7 May 2010 SDIR V / Schlegel, Steck

Model Driven Software Development
/ Technical Details /

7 May 2010 SDIR V / Schlegel, Steck

Model Driven Software Development
/ Technical Details /

7 May 2010 SDIR V / Schlegel, Steck

Model Driven Software Development
/ Technical Details /

7 May 2010 SDIR V / Schlegel, Steck

Model Driven Software Development
Example

7 May 2010 SDIR V / Schlegel, Steck

Model Driven Software Development
Example

7 May 2010 SDIR V / Schlegel, Steck

Model Driven Software Development
Idea and Approach

