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Abstract

Autonomous mobile robots in general and service robots in particular are often required to operate
in the same dynamically changing everyday environments as humans, sometimes even along with
them. Such systems have to perceive their environment and react appropriately to the huge amount
of changes and contingencies depending on situation and context. To achieve robustness in task
execution, the goal is not to maximize efficiency but reliable and flexible execution of various tasks
even in unknown and unpredictable environments. The skills, the components of the robotic system
provide, have to be combined to form a variety of behaviors by setting the components into different
configurations. Dynamically and flexibly managing the huge amount of different configurations is
one of the major challenges tackled in this work. To further improve robustness in task execution and
decision making at runtime symbolic and subsymbolic mechanisms have to be combined.

This is achieved by utilizing the Three Layer Architecture, where the sequencer mediates between
the symbolic and subsymbolic mechanisms of the skill layer and the deliberative layer. The focus of
this work is laid on the sequencing layer. Based on several use cases the requirements are derived
a sequencer has to address. Especially, the situation and context dependent task execution and the
handling and recovering from the huge amount of contingencies play a crucial role. This issue is
addressed by dynamically generating a task net at runtime, where the task expansion depends on the
current situation and can be modified at runtime. Plan steps can be removed or added at runtime to
react on contingencies and to recover from failures.

The verification of the approach is achieved by a reference implementation of the utilized Three
Layer Architecture focusing on the sequencing layer. The major contribution of this work to the overall
architecture is the Lisp-based reference implementation of the sequencing layer, namely SMARTTCL.
The system is able to perform various complex tasks including guiding the robot in a new environment
and approaching the shown locations. Furthermore, mobile manipulation tasks, like cleaning up a
table are performed.
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Chapter 1

Introduction

1.1 Introduction and Motivation

The development of service robots has gained more and more attention over the last years. In partic-
ular, the field of mobile manipulation raise the complexity. The execution of complex manipulation
tasks, in unstructured and dynamic environments, require interdisciplinary scientific and engineering
contributions which are currently beyond the state of the art in robotics. [2]

Nowadays, the algorithms and functionality of isolated and selected robots is developed enough
to already build impressive robotic systems, but it is still challenging to integrate several such be-
haviors into one system. Today’s robotic technologies support the development of complex systems
with advanced perception, navigation and manipulation capabilities, but their effectiveness has been
demonstrated in simple scenarios only (i.e. complex algorithms but low overall interaction of system
components).

Potential applications require a robot to operate in the same environment as humans. In many
situations the robots have even to work along with humans and to interact with them. Such systems
have to be able to perceive their environment and to react appropriately to changes. The major goal
is, that robots have to operate reliable and flexible in the highly dynamic everyday environments over
long periods of time. Therefore the situation dependent usage of individual skills plays a crucial
role. The robot control architecture should provide the flexibility, that the system can adapt itself to
the current situation. Several decisions may require to consult simulators or analysis tools to check
whether the desired configuration and parametrization of the skills is valid and reasonable.

In reference to the best available knowledge the robot has to decide at runtime for the most appro-
priate behavior to execute, to fulfill the demanded task. Otherwise the robot should state that it is not
able to handle the current situation. This situation-driven task execution requires the integration of
symbolic and subsymbolic mechanisms of information processing. Subsymbolic mechanisms ensure
flexibility and reactivity since they typically allow short cycle times. But they are not able to look into
the future and to reason about how to achieve higher-level goals. Symbolic mechanisms ensure goal
oriented activities and are able to reason about the steps which are necessary to achieve higher-level
goals, but typically require time-consuming calculations and a complete world model.

The state-of-the-art architecture to integrate symbolic and subsymbolic mechanisms is the Three
Layer Architecture [15]. The concept behind the instantiation of the Three Layer Architecture used
in this work is described in [37] [40] [42]. The lowest so-called skill layer comprises components
mainly operating on the level of sensors an actuators. These components typically provide services
for map building, path planning and collision free motion control. The medium sequencing layer,
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which is the focus of this work, is responsible for the situation-driven task execution. Therefore the
sequencer performs dynamic online reconfiguration of the components of the underlying skill layer.
Finally, the uppermost deliberative layer processes time-consuming algorithms, like symbolic task
planning, simulations (e.g. physics simulators) and system analysis (e.g. realtime schedulability
analysis, performance analysis).

Furthermore a novel instantiation of the Three Layer Architecture needs to involve the novel design
process for robotic system engineering described in [41]. This enables the development of complete
robotic systems that are more complex and more robust than the robotic systems that can be developed
with current technologies. In that approach both, the system engineer and the robot reason about the
problem and the solution spaces. Instead of trying to find all-time optimal solutions at design-time the
focus moves to making the best possible solution at run-time. Therefore, the robot developer has the
ability to formally model and relate the different views of the robotic system design and reasons about
their correctness by means of offline simulation techniques. At run-time the robot has the ability
to reconfigure its internal structure and to adapt itself according to its understanding of the current
situation.
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The major contribution of this thesis is a novel instantiation of the Three Layer Architecture (fig.
1.1), focusing on the sequencing layer. Especially the situation-driven execution and the recovery
from a variety of contingencies play a crucial role such a sequencing layer has to provide to ensure
robust and reliable task execution over long periods of time. The focus of this thesis is laid on the
concept and definition of a task coordination language' to implement the sequencing layer. This lan-
guage is named SMARTTCL (Smart Task Coordination Language) and has to be seamless integrated
in the Three Layer Architecture. It should provide easy to use and precisely defined interfaces towards

'In the literature, task coordination languages are often refered as execution languages. In this thesis these terms are
used as synonyms.
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the other layers. The at design-time left open variation point have to be bound at run-time. For this
purpose, simulators, analysis tools, as well as symbolic task planners have to be integrated in the
overall system.

1.2 Thesis Outline and Contributions

This thesis is concerned with aspects of instantiating a Three layer Architecture for autonomous mo-
bile service robots. The major focus is laid on the sequencing layer. Furthermore, several aspects on
how to interface to the skill layer and the deliberative layer are given.

Chapter 2: describes several use cases which are covering a range of different behaviors and situa-
tions that are of relevance for service robots.

Chapter 3: discusses related work with respect to control mobile service robots.

Chapter 4: presents the major contributions of this thesis. Out of the use cases described in chapter
2 several requirements are derived. The basic design decisions are motivated and compared to
other approaches. The concept of the sequencing layer is presented.

Chapter 5: describes the Lisp based reference implementation of the sequencing layer, which is
called SMARTTCL.

Chapter 6: describes the experiments performed with the instantiation of the Three Layer Architec-
ture using SMARTTCL as the sequencing layer. The example scenarios cover the use cases and
analysed requirements. The results of this thesis are summarized and discussed.

Chapter 7: draws a conclusion and presents future work.

Appendix A: illustrates the source files of the guiding tour scenario.



CHAPTER 1. INTRODUCTION



Chapter 2

Use Cases

This section describes several use-cases which are covering a range of different behaviors and situ-
ations that are of relevance for service robots. Each use case description contains a summary of the
most important challenges occurring in the use case. Based on these challenges the requirements of
this work are derived in section 4.1.

2.1 Navigation in Everyday Environments

A basic behavior each service robot has to manage is the navigation in everyday environments. Es-
pecially, the coordination and configuration of the skills which are necessary to approach arbitrarily
given positions, cover several aspects an execution language (sequencing layer) has to support.

2.1.1 Navigation Basics

An example of the involved skill components is illustrated in fig 2.1. The deployment is specific to the
applied robot, but can easily be adapted to any mobile robot platform. A higher-level view on each of
the components is given below.
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Figure 2.1: Navigation components: Skill components required for goal-directed navigation.

The SmartPioneerBaseServer abstracts the hardware of the mobile robot platform. It provides the
position information of the robot and requires velocity commands (v,w) to control the robot.

5
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The SmartLaserServer provides cyclic laser scans of the environment. These laser scans are, for
example, used for obstacle avoidance, mapping and person following.

Figure 2.2: Longterm map showing a simple office building with a current map excerpt illustrated as
red rectangle.

The SmartMapperGridMap component is based on gridmaps generated out of raw laser data and
the robot’s position information. The mapper builds a longterm map and a current map (fig. 2.2). The
longterm map is a weighted occupancy gridmap which represents the robots environment perceived
over a long period of time. The current map is a binary gridmap which acts as a short term memory.
The preoccupation of the current map is usually generated out of the longterm map.

Using the current map, the SmartPlannerBreadthFirstSearch generates a path on that the robot
can approach a goal region. The path is represented by intermediate waypoints and the goal waypoint.
The SmartPlannerBreadthFirstSearch component comprises an event port to announce contingencies
like, no path to the specified goal could be found, the specified goal is covered by obstacles or the
goal has been reached by the robot. The waypoints calculated by the planner serve as goals for the
SmartCdlServer component.

Finally, the SmartCdlServer component, which is based on the CDL [36] algorithm provides local
motion planning. CDL is an improvement of the dynamic window approach. It considers the dynamics
and kinematics of the robot, as well as its polygonal shape. It consumes raw laser scans or other sensor
perceptions transformed into occupancy grids. The basic idea is that a robot moves along different
curvatures (v,w combinations) which represent trajectories built up by circular arcs. The huge number
of possible v,w combinations is reduced based on the observation that only a few curvatures are
safely selectable given the current state and kinematics of the robot. High performance advantages
are achieved by precalculating lookup tables. The final selection along the remaining admissible v,w
combinations is done by an objective function which trades off speed, goaldirectedness and remaining
distance until collision. Depending on the use case, different objective functions are applied. Thus,
the CDL component can be used in an arbitrary number of scenarios. The component is, for example,
used for approaching the waypoints send by a path planner and following a person.

To form navigation behaviors out of the above described skill components, the sequencer mainly
orchestrates the components SmartMapperGridMap, SmartPlannerBreadthFirstSearch and Smart-
CdlServer.
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2.1.2 Approaching a Position

To approach a desired position the sequencer has to set the above described components into an ap-
propriate configuration. Furthermore, the goals have to be send to the path planning component. The
communication between the mapper, path planner and cdl component are hidden from the sequencing
layer to ensure high reactivity. Feedback from the skill layer to the sequencer is given by sending
events. The path planner, for example, sends events to indicate that a goal has been reached or to
indicate that any problem has occurred.

Depending on the event, different kinds of reaction are appropriate. An event that indicates, that no
path could be found, for example, is typically handled by deleting the current map and preoccupying it
with the cells of the longterm map. The configuration of the other components should not be affected
by that reaction to the event. An event indicating that the goal has been reached, can be handled
by two different strategies, depending on the configuration and purpose of the behavior. The first
one is to stop the robot including to deactivate the mapper, path planner and cdl component. This
deactivation is essential to save resources. For example, if the robot has to perform resource intensive
mobile manipulation tasks at the desired goal location. The latter one is applied whether the goal is
an intermediate goal and the robot has to continue driving without stopping. In such a situation the
cdl component is switched into a strategy to drive reactive while avoiding obstacles. While the robot
is continuing driving, the configuration of the new goal takes place. Afterwards, the cdl component is
switched back to the strategy to approach the waypoints send by the path planner component.

Furthermore there is a distinction between driving to a goal region and approaching a goal point
exactly. The first one is typically performed using a gridmap based path-planner which discretizes
the goal according to the grid size of the map (e.g. Scm). The latter is used to approach a goal more
exactly and can only be used if no path-planning is necessary to reach the goal. In that case the goal
is directly send to the CDL component. In both cases the CDL component is used to perform the
local motion planning. But depending on the desired behavior the component is used in different
strategies and with a different parametrization. Usually both strategies are combined, the first one to
approach the goal region approximately by using the path-planner and the latter one to approach the
goal position exactly.

2.1.3 Switching between Maps

The above described behavior, to continue driving while modifying the configuration of the mapper
and path planner components, is especially essential to switch the robot between different maps (fig.
2.3). Typically the path planning is performed in the current map, which is an excerpt of the much
larger longterm map (cf. fig. 2.2). The two reasons for that are, first to save resources by performing
the planning algorithm in a much smaller search space. And second, to direct the wavefront of the
path planner into a specific direction. This map building and path planning takes place at a discrete
grid-based level. If the operating range of the robot gets larger there is a need for a topological
representation, which is for example covered by different maps organized in a graph representation.

The dimensions of the current maps can be configured arbitrarily, but it is recommended to over-
lap the maps at least by a few meters. Often the current maps are mapped onto rooms in the real world.
This ensures well-defined borders (walls) and crossing regions between the maps/rooms (doors).
However, working with excerpts of a map raise the demand to switch between the maps — without
stopping the robot and waiting until the new configuration is set correctly.

To switch between two current maps, the crossing regions to switch from the one map to the other
are set as goals. These regions are typically available in both current map representations. If the robot



8 CHAPTER 2. USE CASES

Figure 2.3: Switching between maps. The current map is marked with a green rectangle. The red smi-
ley markes the robot; the yellow star marks the final goal region. Intermediate goals to switch between
maps are marked with blue circles. Around the intermediate goal circles the wavefront algorithm used
by the path planner is illustrated.

has reached the region, it is reconfigured to drive reactive. The mapper is deactivated, that the current
map configuration can be modified. After changing the dimension of the current map, the mapper
component is activated again and the new goal region is send to the path planner. To ensure that
the current goal regions, the current map and the waypoint belong all to the same configuration, IDs
are used for synchronisation. Furthermore, the path planner sends an event once it is synchronized
correctly with the current map and is thus ready to send the waypoints to the CDL component. This
event triggers to set the CDL component into the strategy to approach the waypoints. Again, in the
timespan the configuration of the mapper and path planner components take place, the robot is driving
reactive. As the timespan for the reconfiguration of the components is quiet small, the result is a
goal-directed smooth motion of the robot while switching the maps.

So far, it is assumed that the maps overlap and have common crossing regions. But already the
example depicted in figure 2.3 illustrates that it might be necessary to switch between several maps to
reach first, the correct current map and afterwards the final goal region inside this current map. In such
situations it would be necessary that the sequencer knows about all combinations of map switches to
be able to drive to every desired goal independent of the current position of the robot. However, the
different combinations grow with the number of maps and it will be almost impossible to encode and
store them in advance.

A more adequate solution is it to call a symbolic task planner, providing the information in which
map the robot is currently located, in which map the final goal region is located and which maps with
their crossing regions are available. The symbolic task planner will generate an ordered sequence in
that the maps have to be switched.

Summary of Challenges

Online reconfiguration of the Components: The different components have to be parametrized and
activated/deactivated at runtime.

Handling Events: Events are used by the components to send any kind of feedback to the sequencing
layer. These events have to be handled avoiding unwanted side effects.
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Handling Contingencies: Different contingencies which occur during execution have to be handled
to ensure robustness.

Situation-Driven Execution: The selection for the next steps to execute has to depend on the current
situation and context. (configuration of the components)

Integration of a Symbolic Task Planner: To plan the correct ordering in that the different maps
have to be switched to approach a desired location in the corresponding map.

Integration of a Knowledge Base: For example, the knowledge about the different current map prop-
erties and the mappings between the location names (“kitchen”, “dinner table”, “shelf”) and the
position in world coordinates have to be stored and have to be easily accessible in a consistent
way.

2.2 Handling User-Interaction

Interacting with persons, for example by speech or gestures, is another important behavior a service
robot should support (fig. 2.4). This provides a simple and intuitive interface for humans to command
the robot and to set the robot different tasks. Furthermore, it is also an intuitive interface for the robot
to communicate with its users. Typical components supporting speech interaction are illustrated in
fig. 2.4. The SmartSpeechLoquendoOutputServer provides an interface based on a string, which is
send to the component and spoken by the speech synthesis system. The SmartSpeechLoquendoln-
putServer provides a state port to activate and deactivate the speech recognition engine. Deactivating
this component is, for example, reasonable if the robot speaks a text, which should not be recognized
by the robot itself. Another reason for deactivating speech is to save resources in situations where
it is obvious that no speech interactions will occur. User interaction depends typically highly on the
current situation and context. Usually, speech recognition engines have to be parametrized accord-
ing to the words and sentences they can process using a grammar specification. Such a specification
has to be restricted to the current situation. Only the vocabulary which is supposed to be spoken
by the users should be included in the currently activated grammar specification. Not restricting the
grammar will lead to large vocabularies, resulting in a significantly reduced speech recognition per-
formance. Those grammar specifications do not only contain the pure vocabulary, they additionally
contain the mappings between the phrases and the associated semantics. The semantics are used in
the sequencing layer, as semantic is more general than the spoken text. The semantic expression “ap-
proach kitchen-table” corresponds, for example, to the spoken text “Go to the kitchen table”, “Please,
go to the kitchen table”, “Go to the kitchen table, please”, “Approach the kitchen table” and so on.

The SmartSpeechLoquendolnputServer provides an event port to signal whether a desired phrase
was recognized. Events are activated to only fire whether the desired semantic was recognized by
the speech recognition engine. They contain the spoken text (as string) which was recognized, the
associated semantic and the confidence as a quality measure of the recognition.

User interaction is mostly parallel to other activities the robot is performing. For example, the
robot should be able to react to speech commands like “stop following” while it is following a per-
son. Furthermore, the person following task is generally combined with other tasks, like memorizing
locations. This is, for example, used to guide the robot through its new environment and to show it
different locations. In that case the robot has to be able to cope with the speech interaction needed for
person following (“stop following”, “wait”, “follow me”’) as well as with the commands to memorize
the locations (“This is the kitchen”, “The shelf is in front of you”, “The trash bin is on your left”). This
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Figure 2.4: Left: Typical components for speech interaction. Right: The robot Kate interacts with a
person by speech.

parallel and situation dependent usage of speech events raise the complexity an execution language
has to be able to cope with.

Summary of Challenges

Online reconfiguration of the Components: Depending on the situation and context the parametriza-
tion of the speech components, for example, has to be modified.

Handling of Events: Handling multiple activations of the same event (e.g. speech-event) with dif-
ferent activations (parametrization) within different tasks.

Situation-Driven Execution: The execution and selection of the next task to execute highly depends
on the user interaction (event).

2.3 Mobile Manipulation

Service robots managing domestic work, for example, have do be able to perform mobile manipula-
tion. The mostly applied and common form of mobile manipulation behaviors are variations of the
so-called pick-and-place tasks. This includes tasks like cleaning up a table (fig. 2.5) or fetching goods
and bringing them to the operator. More complex manipulation behaviors are, for example, preparing
a meal or doing the dishes. For all manipulation tasks it is of importance that the robot is able to detect
and recognize objects. It should have the necessary information about the object to be able to handle
them appropriately. An empty beverage can, for example, can be thrown into the trash bin, but empty
cups should be taken to the kitchen sink or into a dishwasher. Several goods, like coke or beer are
commonly stored in the refrigerator, whereas cups and plates are usually stored in a cupboard.
Mobile manipulation tasks often require complex behaviors and appropriate reactions to the huge
amount of different contingencies. Complex tasks involve several steps until the goal is reached. For
example, the command, that the robot should fetch a coke from the kitchen, bring it to the living room
and serve it to a specific person has a huge potential for failures that endanger the success of the whole
task. Depending on the failure, the task becomes either unsolvable or the contingency can be handled.
Contingencies which can happen are, for example, that the path to the kitchen can not be found, there
is no more coke in the kitchen or the person the coke should be delivered to can not be found. In case
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Figure 2.5: The robot Kate cleans up a table. It stacks the cups into each other.

there is no more coke in the kitchen the robot might find some in the storage room, or it can drive
to the living room and ask the person to order another drink. These contingencies are specific to the
situation and the robot should be able to handle them.

Furthermore, while handling a delivering task as described above an event might occur which is
of higher priority, like a ringing door-bell. In such a situation it is more important to open the door
as to serve the coke. But after opening the door and receiving the guest the robot is in a completely
different situation (not only different location). Furthermore, the abortion/interruption of the currently
activated delivering task is not straightforward. The manipulator might be in a grasping configuration
and has to be set into a configuration which is appropriate for driving. The situation is even more
difficult if the robot has already grasped the coke, as it will need the gripper to open the door.

As the tasks are getting more complex it will not be possible to encode all behaviors and task
expansions beforehand for all situations and world states. An example scenario, which is an extension
of the already available cleanup table scenario [54]. The scenario comprises the three different objects
(i) cups, (ii) beverage cans and (iii) chips cans. The objects are constraint, that two cups can be stacked
into each other and two beverage cans can be stacked into one chips can. Furthermore, the beverage
and chips cans are garbage if empty and should be taken to the trash bin, while the cups have to be
taken to the kitchen sink to be washed. Different amounts of each object can be placed on the table.
The robot has now to choose for the best, or at least a reasonable, way how to clean the table up.
Therefore, a symbolic task planner can be considered giving it the objects and associated constraints.
More details on this scenario are described in section 6.2.

Summary of Challenges

Online reconfiguration of the Components: The different components have to be parametrized and
activated/deactivated at runtime.

Handling Events: Appropriate handling of the different events which are send from the skill com-
ponents to the sequencer.

Handling Contingencies: The huge amount of contingencies has to be managed.

Situation-Driven Execution: The selection for the next steps to execute has to depend on the current
situation and context.

Integration of a Symbolic Task Planner: To generate higher-level plans a symbolic task planner
has to be considered.



12 CHAPTER 2. USE CASES

Integration of a Knowledge Base: The knowledge about different locations, objects, persons, or-
ders and goals has to be managed.

2.4 Composition of new Behaviors out of existing ones

New scenarios have to be composed out of existing scenarios or parts of them. Recurring behaviors
should not be “reinvented” for every scenario, instead approved solution which provide flexibility,
reasonable levels of abstraction and information hiding, have to be reused. Internal structures like
task decomposition, events and housekeeping activities have to be hidden from the developer which
reuses a behavior block.

A “new” behavior like guiding the robot around, for example, requires to compose the “existing”
behaviors follow person and memorize location in a way that they run parallel. It should be able to
tell the locations to the robot while it is following.

Furthermore, the developers of behaviors should be supported by tools. This includes, for exam-
ple, debugging and monitoring the task execution. Which behavior was chosen in what situation and
why.

Summary of Challenges

Parallel behaviors: Behaviors should be composable in a parallel way.
Reusability: Reusability of behaviors without detailed knowledge about internal structures.
Debugging/ Monitoring: Monitoring of the task execution and decision making process.

Verification/ Analysis: Verification and analysis of the behavior blocks.

2.5 Robustness by Online-Adaptation through Simulation and Analysis

The huge amount of different situations and contingencies is not known beforehand during the devel-
opment of the robot. Several parameters are unknown during the design-time and have to be bound
at runtime. These parameters can, for example, be bound by considering simulation tools at runtime.
Using a physics simulator, for example, the maximum allowed velocities of the robot taking the cur-
rent payload into account can be reasoned. As not all different situations are known at design-time,
not all possible configurations of the robot system can be analysed beforehand. To achieve robustness,
the analysis has to be performed at runtime before setting the configuration. Therefore, again simula-
tors and analysis tools have to be considered. For the different configurations it can, for example, be
chacked whether the resources (e.g. computational power, bandwidth of communication buses, ...)
are available.

Summary of Challenges

Integration of simulators and analysis tools: To further improve the decision making of the robot
simulators and analysis tools have to be considered at runtime.



Chapter 3

Related Work

This chapter presents work related to this thesis. At first, Three Layer Architecture is motivated. Af-
terwards, approaches focusing on robot control are discussed. Finally, task coordination languages,
focusing on situation and context dependent execution are presented. These approaches are of spe-
cial interest for this work and those having mostly influenced the design of SMARTTCL are further
analysed in chapter 4.

3.1 Architecture

An architecture describes how the overall robot system is constructed from its components and how
the components fit together to form the whole. In this section, the term architecture refers to the
arrangement of the control mechanisms of a robot and how the components are organized in different
layers. A very well overview on robot architectures is given in [21].

In [52] [53] a two layer architecture is described that integrates a state-of-the-art symbolic planner
with a library of robot control programs. A hierarchical task network planner (HTN) is used to directly
interact with the robot skills. Robot skills are implemented in control programs that directly access
the sensors and actuators. To achieve high reusability the control programs are basic, which results
in an increased complexity for the task planner. Complex robot tasks are accomplished by sequential
execution of less complex actions that are triggered and configured by the JShop2 [27] task planner.
The JShop2 planner performs task-decomposition according to hierarchical task-nets. The planner
generates plans based on the current world state. The plan consists of skills represented in the skill
library. The physical execution of a plan is done by control programs which are invoked. Executed
control programs access and modify the current world state in symbolic terms as well as continuous
representations. Several experiments performed by the authors of the paper [52] showed that failures
occurred due to an inconsistent representation of the world model. The control program changes the
world state and causes replanning with the updated state. To overcome the closed world assumption,
which is necessary for HTN planning, they use special skills causing replanning explicitly. Aborting
a plan and taking time for generating a new plan can take a lot of time. Procedural and deductive
execution systems have complementary strength and weakness and are directly combined. [52] [53]

In contradiction to the above described approach, in this work a Three Layer Architecture [15]
is used. The distinguishing feature of a three-layer architecture is that one can control real robots
performing complex tasks even with a trivial deliberative layer and even with skills that cannot handle
all situations. The sequencing component provides the necessary glue logic and is the place to store
procedural knowledge that neither fits at the deliberative nor at the skill layer. “[...] a plan, generated
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by most any current planner, still requires the help of an execution system to be useful for real-world
execution.” [51]. The sequencer bridges the gap between symbolic and subsymbolic representations.

An introduction into Three Layer Architectures can be found in [15]. The instantiations Animate
Agent Architecture [10] [11], 3T [7], ATLANTIS [12] and the instantiation based on SMARTSOFT [37]
[40] [42] influenced this work. The different flavours of the instantiations are discussed in chapter 4.
They all share the basic concept to divide the system complexity in the three layers of abstraction,
namely the skill layer, sequencing layer and the deliberative layer. The major distinction is whether
the goals are specified at the deliberative layer and then refined in a top-down manner, resulting in
giving the overall control to the symbolic planner. Or specifing the goal at the sequencing layer which
then orchestrates the two other layers and mediates between them.

3.2 Robot Control Mechanisms

Several Contributions exist, that focus on controlling robotic systems.

URBI

URBI (Universal Robotic Body Interface) [6], for example, includes a scripting language for control-
ling the low-level layer of a robot. It is based on a client/server architecture. The server is running
on the robot and the client is sending commands to the server. Commands can be written directly in
a telnet client or issued by a program using the liburbi library. URBI provides control constructs like
for,while, if then else and loop. For event catching, control structures like whenever,
at and wait are provided. URBI is, for example, used to demonstrate simple action/perception loops
on Aibo [4], like walk pattern generation. The example depicted below shows a “Ball Tracking Head”
behavior [6].

whenever (camera.ballx != —1) {
headPan.val = headPan.val +
camera.xfov x (0.5 — camera.ballx) &
headTilt.val = headTilt.val +
camera.yfov * (0.5 — camera.bally)
1
at & (camera.ballx == —1 ~ 500ms)
scan : {
headPan.valn = 0.5 sin:4000 ampli:0.5 &
headTilt.valn= 0.5 co0s:4000 ampli:0.5
1
at (camera.ballx != —1) stop scan;

The focus of URBI is on controlling the joints of the robot or to access its sensors. It is supposed
to be used together with other languages which do the cognitive part of the robot behavior.

Hybrid State Machines

In [9] [28] hybrid state machines (HSM) to program the robots behavior are proposed. [28] provides
an implementation which is based on Lua [23]. It is proposed to bridge the gap between high-level
strategic decision making and low-level actuator control. Examples demonstrate motion patterns like
the standup skill with the humanoid standard platform NAO [26].
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State MACHine (SMACH)

SMACH [47] aims to rapidly compose complex robot behaviors out of primitive ones. It is based on the
concept of hierarchical concurrent state machines. SMACH is implemented as a language extension
of Python and integrated in ROS [32]. It is, for example, used in the PR2 robot at WillowGarage as
task coordinator for scenarios like playing pool, cleaning up the table with a cart and fetching beer
from the refrigerator. However, the SMACH behavior of each scenario is developed from scratch, with
almost no reuse. SMACH supports static composition of behaviors with little capabilities for situation
dependent task execution.

3.3 Situation-Driven Task Coordination

The above mentioned approaches are not suited to be used as sequencer in a Three Layer Architecture.
They provide almost no means to perform online reasoning and to interface with a deliberative layer
as supported by SMARTTCL.

A comparison of languages which have already been used in Three Layer Architectures can be
found in [22] [51]. These languages address aspects that are up-to-date but had been developed with
limited robot platforms, capabilities and scenarios. The power of those concepts can now be exploited
as robot platforms with advanced skills are available. The progress in robotics allows to proceed the
development of those ideas. ESL, RAP and SimpleAgenda have strongly influenced the design of
SMARTTCL. Specific aspects of these languages are analysed and compared in detail in chapter 4. In
the following some languages are presented.

ESL

ESL (Execution Support Language) [13] is based on a set of macros that expand into Lisp. To sup-
port parallel activities the Lisp multi-tasking library is used. The knowledge base is a Prolog-based
database also implemented in Lisp. ESL was designed to respond quickly to events while bringing
together potentially large quantities of information to bear on its decisions. Contingency-handling is
based on the concept of cognizant failures [29]. Failures are signaled when they occur and recovery
procedures are used to recover from the failure. Recovery procedures are not bound to tasks. Con-
ditional task execution is supported by alternative methods with conditions describing under which
condition those methods are appropriate. Task synchronization is done by a data object called event.
ESL tasks are inherited from events and thus tasks can also wait for other tasks to finish. They have
a linear execution thread. The bodies of a task-net run all in parallel. The task-net itself blocks,
until all children have finished. ALLOW-FAILURES will abort all sub-tasks if one of them fails.
OR-PARALLEL finishes the sub-task if one of them finishes successfully or all of them fail. ESL pro-
vides a mechanism for solving a constrained version of controlling inter-task conflicts. Property locks
are used to coordinate tasks so that they do not try to achieve different values for a single property at
the same time. The example' depicted below gives an impression how ESL programs look like: [14]

(defvar xwidget—status=* :o0k)

(defun operate—widget ()
(if (eq xwidget—status* :o0k)
(format t "~&OPERATING WIDGET SUCCESSFULLY.")
(fail :widget—broken xwidget—status x)))

!The example is part of the ESL user’s guide [14]
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(defun break—widget (&optional (state :broken))
(setf xwidget—status* state))

(defun attempt—widget—fix (from—state)
(if (eq xwidget—status* from—state)
(setf xwidget—status* :0k))
(if (eq *widget—status* :o0k)
(format t "~&Widget is fixed.")
(format t "~&Widget fix didn’t work.")))

(defmacro esl—demo (&body body)

“(progn
,@(mappend
(fn (form)
‘((format t "~&~%Evaluating: ~S" ’,form)
(let ( (result (catch :abort ,form)) )
(format t "~&~S returned ~S" ’,form result))))
body)

(values)))

The example operates on a WIDGET, which responds to the following operations. (operate-
widget) to print a message if the WIDGET status is : OK, otherwise fail. (break-widget
&optional (state :broken)) toforcethe widgetinto state STATE. (attempt-widget-fix from-
state) to make the widget state : OK if and only if the current WIDGET state is FROM-STATE. [14]

Further aspects of ESL are analysed in chapter 4, how they influenced this thesis.

RAP

The RAP [10] system is designed to carrying out sketchy plans generated by planners. RAP uses a
Lisp-based interpreter to manage a task-net and to interface to the skill-level. It takes task goals and
breaks them down into steps that can be achieved by activating a set of skills. The final task selection
is performed at runtime. It provides concepts for synchronization with the real world and to react to
contingencies. Unfortunately, actions can just be executed in the leafs of the task tree. The success
or failure of RAPs depend on the state of the RAP World Model. A RAP enables the appropriate skill
and waits for it to generate a signal that indicates the success or failure of the skill (Atomic Actions).
This tight integration severally restricts the usage of the RAPs, as each change in the world has to be
synchronized with the world model. The following RAP example describes a task to place the pan-tilt
unit to a specific position. [10]
(define—rap (primitive—pan—to ?angle)
(succeed (and(head—pan—angle ?b)
(within (= ?angle ?b) 0.02)))
(method
(primitive
(enable (pan—to ?angle))
(wait—for (:pan—at ?a) :SUCCEED (head—pan—angle ?a))
(wait—for (:pan—stuck ?a) :FAIL (head—pan—angle ?a))
(disable :above))))

If the current head-pan-angle of the pan-tilt unit in the RAP World Model is within 0.02 radians
of the desired angle the task is complete and succeeds. If the current head-pan—-angle cannot
satisfy the succeed test, the method enables the pan—to skill and waits for it to generate a signal. In
case of a : pan—at signal the method succeeds. The method also waits for the : pan—stuck signal
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for the case the pan-tilt unit cannot move. In either case, when signals arrive, the method disables
the pan—to skill it enabled and finishes. The final argument in the wait—for statement specifies a
change to make in the RAP World Model. [10]

Several experiments are performed with the RAP system by the author of this thesis to gain ex-
perience with sequencing layers. Several of the limitations and problems occurred are described in
chapter 4 and are taken into account for the design of SMARTTCL.

SimpleAgenda

The SimpleAgenda [34] provides simple task execution mechanisms. The actions are encoded in
a construct called operator. The operators are managed within a stack in the task. The tasks are
executed one after another. The operators are stored in the KB and instantiated at runtime. An operator
is selected from the KB according to the match of the name and input variables specified in the task
stack against the entries in the KB. The SimpleAgenda does not provide preconditions. Contingency
handling is performed with rules. In case an operator execution fails the return value is matched
against the rules stored in the KB. The rules can, for example, manipulate the stack of the task to
recover from the contingency. Child tasks can be removed or added. The SimpleAgenda does not
provide concurrency. It is implemented in Lisp. The KB which is used is the SimpleKB [35] which is
also implemented in Lisp.

The example illustrated in figure 3.1 shows an execution trace of the person-following scenario.
The steps of the example execution trace are described in the following:

1. The task execution is started with the three operators op—init, op—-followMe and op—exit
on the stack. Furthermore, three rules are assigned to the task.

2. The first operator is taken from the stack and executed. The initial configuration of the compo-
nents is performed and the text that the robot is ready to follow a person is announced.

3. The next operator is responsible to wait for an event from the speech recognition component.

4. The event “follow-me” is fired by the speech recognition, implying to finish the operator with
the return value FOLLOWME. That triggers the corresponding rule to set the robot into the con-
figuration for person following and activating it (skill-robot-move). Furthermore, the operator
op-followMe is pushed on the stack by the rule to further wait for events from the speech
recognition component.

5. Intermediate state showing that the op—followMe is on top of the stack and will be executed
next.

6. The operator op—-followMe is executed and is again waiting for an event.

7. The event “stop” is fired by the speech recognition, implying that the operator finishes with the
return value STOP. That triggers the corresponding rule to stop the robot. This rule does not
push any operator on the stack.

8. The operator op—exit is executed to shut the robot down and announce the text “bye bye”.

Similar to the RAP system several experiments (including the mentioned one) are performed with
the SimpleAgenda by the author of this work. The SimpleAgenda strongly influenced the design of
SmartTCL. For example, the SimpleKB is used in the reference implementation of SmartTCL.
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RPL

RPL [24] is a predecessor of RAP. Its syntax is more in the style of Lisp. It is implemented as a macro
extension of Lisp. A plan consists of procedure calls glued together with syntactic constructs like
SEQ / IF. For the execution of RPL plans a stack is used. The RPL interpreter does not attempt to
maintain a world model that tracks the situation outside the robot. RPL supports (t rue) concurrency.
Synchronisation is done by so-called valves. Tasks which should not run simultaneously compete for
a valve. The winner is allowed to run, while the loser waits for the winner to finish and release the
valve. Variables are lexically scoped (scope of an identifier limited to a block of source code), but
global Lisp variables can also be used. The basic control concept of RPL is similar to task scheduling
in operating systems. [24]

TDL

TDL [45] supports task decomposition, fine-grained synchronization of sub-tasks, execution monitor-
ing and exception handling. TDL code is transformed into C++ code that invokes the Task Control
Management (TCM). TCM is a reimplementation of the TCA task-level control mechanisms. In TCM
there is no central server, instead it is a library that is linked into user code. [43] [44] [46]

TDL programs operate by creating and executing task trees. Each task tree node has an action
associated with it. An action is a parametrized piece of code. It can contain arbitrary C++ code, with
certain restrictions. It can perform computations, dynamically add child nodes to the task tree® or
perform some physical action in the world. Task trees have a parent/child relationship and synchroni-
sation constraints. TDL provides two type of nodes: goal nodes are used to expand the task tree and
represent higher-level tasks. The associated actions typically add children to that node. Command
nodes are the leaves of the task tree and contain an action. The exception handling in 7DL is similar
to the “catch and throw” mechanisms in C++, Java and Lisp. The main difference is, that the control
stack remains as it is when an exception handler is invoked. It is then up to the handler to manipulate
the control stack by adding new nodes or terminating existing ones. Exception handlers are associated
with a specific node in the task tree and contain a reason in form of a user defined string. [45]

Task trees are specific task nets, where the tasks are stored in a tree structure. Generally, in a task net the tasks can be
stored in an arbitrary way (e.g. task pool).
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Chapter 4

Method

In this chapter the concepts of the instantiation of the Three Layer Architecture are discussed. The
focus is laid on the sequencing layer. At first the requirements derived from the use cases and sum-
marized challenges are analysed. Afterwards, the complex of problems is discussed. Finally, the
concepts are presented.

4.1 Analysis of Requirements

In this section the requirements are analysed and weighted for their relevance for this thesis. The
analysis is based on the use cases and summarized challenges depicted in chapter 2. The following
list of requirements has no specific order.

1. Hierarchical Tasks

The tasks have to be organized in a hierarchical way. There needs to be a link between the task and
its subtasks. The task description has to provide the possibility to express such a relationship.

cleanup-table

[approach table | [recognize cups | [stack cups gpproach trash | [ throw into approach
in

trash bin operator

[approach region| [search trash bin] [approach exact | [orientate |

Figure 4.1: Example of a hierarchical task decomposition. The cleanup table task is expanded into
detailed steps.

A hierarchical relationship between the tasks allows to describe a task as an abstract representation
of the more detailed steps, encoded as subtasks, to achieve a goal. That further ensures reusability,
as a higher level task can be composed out of already existing tasks. Figure 4.1 illustrates an excerpt
of the task decomposition of the cleanup table scenario. The robot has to cleanup the cups from a
table!. Therefore the robot hast to stack recognized cups into each other and throw them into the trash

'A video showing that task can be found on YouTube: http://www.youtube.com/roboticsathsulm#p/u/
5/40d4D1k5LCQ
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bin. This task is composed out of the steps: approach the table, recognize cups, stack cups into each
other, approach the trash bin, throw cups into trash bin and drive back to the operator. The task to
approach the trash bin, again is further detailed into the steps: approach the region where the trash bin
is expected, search for the trash bin and determine the exact position, approach the trash bin exactly
and orientate the robot towards the trash bin.

II. Reuse of Tasks

Tasks have to be reusable to build different scenarios. The tasks have to be reusable as a kind of black
box. That requires, that no detailed knowledge about the task internals should be necessary to know
to be able to reuse the task.

Reusability addresses the aspects that behavior developers can compose new behaviors out of
existing ones. The example given in the above described requirement I. illustrates, that several tasks
are reused to create a new complex task. The results of this work should provide an example how
tasks can be reused.

I11. Parallel Execution

The underlying formalism of the interpreter has to support parallel execution of tasks. Different
execution policies have to be supported.

e all tasks have to finish their execution (parallel)
e if one of the parallel tasks has finished, the others are aborted (one-of)

Parallel execution of tasks results from the use case, that a new task should be composable out of
existing tasks. Requirement I. already addresses this issue, but does not address parallel execution.
Several of the described use cases require to support the composition of existing tasks which run in
parallel.

IV. Managing Events

Events or similar concepts supporting asynchronous notification have to be managed.

Events and other asynchronous notifications are the preferred way to interact with the robotic
components. Notifications, that a specific goal has been reached are typically send as event, for
example.

V. Handling Contingencies

The interpreter has to provide a mechanism to handle the huge amount of contingencies occurring at
runtime.

The requirement to handle the huge amount of different contingencies occurs in almost each of
the use cases. Especially the robust execution in real world raise the complexity.

V1. Plan Modification at Runtime

Plan modification provide the capability to change the execution steps of a task at runtime. The
underlying formalism of the interpreter has to be organized in a way that allows to change the subtasks
of a task.
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Handling a contingency (requirement V.) includes to call an appropriate action depending on the
currently executed task and kind of failure occurred. But requires also to recover from that contin-
gency. Therefore it might be necessary to modify the plan described in the currently active task. That
requirement, for example, is necessary to implement the use case to switch between different maps.

VIL. Integration of Deliberative Tools

Tools for simulation, analysis as well as symbolic planners have to integrated.

The basic steps how to integrate, for example, a symbolic task planner have to be detailed. That
includes information gathering in the sequencing layer and forwarding it to the symbolic task planner.
Furthermore details how the generated plan is incorporated in the task execution in the sequencing
layer has to be given. The integration of a symbolic task planner is required to implement the switching
between maps use case and furthermore the use case to cleanup the table with several different objects.

VIII. Integration of a Knowledge Base

A Knowledge Base (KB) has to be integrated in the sequencing layer. It has to be accessible from the
tasks to store and retrieve information occurring at runtime.

Especially scenarios including mobile manipulation require the integration of a KB to store, for
example, information about objects.

IX. Information Exchange between Tasks

A mechanism to exchange information between tasks has to be supported. Information gathered or
generated in a task has to be made available to other tasks.

X. Task Selection at Runtime

The final selection which task to execute has to be peformed at runtime. That includes, that several
tasks for the same purpose can be described and stored.

XI. Debugging the Task Expansion

The task expansion at runtime has to be made available for the behavior developer to debug the
execution steps and decision made at runtime.

Requirements Overview

The requirements analysed above are summarized in table 4.1. Each requirement is assigned with the
relevance for this thesis.

4.2 Complex of Problems

This section focuses on the complex of problems arising in the definition of a task coordination
language. Fundamental concepts and mechanisms are discussed. Several related approaches are
taken into account how the issues are addressed there. Depending on that analysis, the concept of
SMARTTCL is illustrated in section 4.3.



24 CHAPTER 4. METHOD

] No. \ Requirement Relevance
L Hierarchical Tasks very high
II. Reuse of Tasks very high
III. Parallel Execution very high
IV. | Managing Events very high
V. Handling Contingencies high
VI. | Plan Modification at Runtime medium
VII. | Integration of Deliberative Tools medium
VIII. | Integration of a Knowledge Base high
IX. Information Exchange between Tasks | high
X. Task Selection at Runtime very high
XI. | Debugging the Task Expansion low

Table 4.1: Requirements with assigned relevance.

4.2.1 Utilization of the Three Layer Architecture

This section illustrates how the Three Layer Architecture is utilized in other approaches. The different
approaches are discussed and the pros and cons are analysed. The basic question is how the three
layers interact with each other. The major decision is whether the deliberative layer generates a plan
and forwards the plan to the sequencer (top-down) or the sequencer calls the deliberative layer.

The first approach proposes a top-down decomposition of the goal. The goal is specified at the
deliberative layer which installs tasks in the sequencing layer. That approach is, for example, used in
the Animate Agent Architecture [10] or in 3T [7].

In the Animate Agent Architecture (fig. 4.2) the RAP system is used as sequencer. The overall
goal the robot has to achieve is specified in the deliberative layer. The planner in that layer generates
a plan including the steps how to achieve the goal. That plan is forwarded to the RAP Executor
(sequencing layer). The RAP Executor is responsible for executing the plan by activating/deactivating
the appropriate skills in the skill layer. Therefore, the steps generated by the planner in the deliberative
layer are further detailed into substeps. While executing these substeps the current situation of the
robot, which is represented in the RAP World Model is taken into account. To react on dynamic
changes occurring in real world, both the RAP Executor and the planner interact with the RAP World
Model. Small deviations in the plan execution can typically be handled in the sequencing layer.
Otherwise, the symbolic planner generates a new plan which is then again forwarded to the RAP
Executor. In such a situation, it has to be ensured, that the RAP Executor does not change the world
state while the symbolic planner generates a new plan. This can result in a different initial state that
was not assumed as the plan was generated. Furthermore, it is not obvious whether the sequencing
layer or the deliberative layer is responsible to fix the current contingency. It could happen, that the
RAP Executor has already solved the problem, but the symbolic planner has despite generated a new
plan and forwarded it to the RAP Executor. This architecture is restricted to use exactly one symbolic
planner. Other deliberative tools are not integrated in that architecture.

In contrast to that, ATLANTIS [12] and the SMARTSOFT based Three Layer Architecture described
in [42], for example, proposes to specify the goal at the sequencing layer. The sequencer then can
consider the symbolic planner in the deliberative layer. Based on the generated plan the sequencer can
manage the further task expansion and execution, can react on contingencies and perform simple local
plan repairs. As in that approach, the deliberator is not directly in the control loop the performance
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Figure 4.2: The Animate Agent Architecture [11].

is in no way affected by the deliberator to respond to contingencies. Calling the deliberative layer in
specific situations gives the freedom to use different symbolic planners specific to the current problem
domain. For example, calling Metric-FF [20] in case the domain requires to use metrics and numerical
constraints (e.g. only three cups can be stacked into each other) or calling LAMA [31] which provides
a better performance and seems? to find better solution with respect to the action costs. Furthermore,
not only different symbolic planner systems can be called — that approach allows to consider several
tools which can be incorporated in the decision making at runtime depending on situation and context.
That includes tools providing system analysis, monitoring tools, physics simulators, plan verification
and tools to perform risk analysis of plans or plan steps. Therefore, the latter described approach
appears to provide the better solution. Giving the control to the sequencer ensures reactivity, but also
gives the freedom to consider several time-consuming tools for decision making individually.

4.2.2 Agenda Structure

The structure of the agenda defines how the different tasks are related to each other and how they are
managed. The analysed requirements already specify that the fundamental structure has to be hierar-
chical. Almost all execution languages support hierarchies, but with different aspects and capabilities.

The SimpleAgenda, for example, provides only a limited hierarchy. Two different structures are
supported: tasks and operators. A task can contain any number of operators. But a task can not contain
other tasks nor can an operator contain a task. That shallow hierarchy severally restrict the usage for
building complex real world scenarios.

RAP and TDL are based on task-nets. Both distinguish leaf nodes from interior nodes of the task
tree. That requires different structures for the different nodes in the task tree. In TDL the leaf nodes
are called commands, the interior nodes are called goals. Goal nodes can contain command nodes as
well as goal nodes. Each node in the task tree can contain an action. In RAP, for example, only the
leaf nodes can execute actions. That restriction in RAP can not be applied to real robots. Several use
cases require to execute an action during task expansion in each level of the expansion. For example,
to activate a behavior that remains active while the task-net is further expanded and is deactivated on
finishing the task. Otherwise dedicated leaf-nodes have to be inserted to activate/deactivate the desired

2Several experiments were performed where LAMA found the optimal solution and FF did not.
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behaviors. Figure 4.3 illustrates these two variants. Furthermore, it seems to be a better solution to
have only one structure to describe the tasks of the task-net.

activate deactivate
behavior behavior

|
|
|
|
|
|
ann : activate
|
|
|
|
|
|

T deactivate

behavior behavior

Figure 4.3: Activating/deactivating behaviors in nodes. left: Behaviors are activated and deactivated
in inner nodes. right: Behaviors are activated and deactivated in artificially added dedicated leaf
nodes.

4.2.3 Underlying Formalism of Interpreter

The underlying formalism of the task interpreter describes the mechanisms to execute a behavior. This
includes managing hierarchies and parallelism, triggering and synchronizing the task execution and
providing the flexibility for runtime decisions needed in robotics.

The analyzed requirements specify that the underlying mechanism has to support hierarchical as
well as parallel task execution. Hierarchical task execution raises the questions how to describe the
hierarchies, how to manage the current state of the task execution (currently active tasks), how to
organize the child tasks and how to react on events activated within any of the tasks in the hierarchy.
Parallelism raises the question how to synchronize parallel tasks, whether to use true concurrency and
how to deal with parallel tasks in case one of them has finished execution — aborting the others?

Several languages support true concurrency. Actions described in the action blocks are executed
within individual threads/tasks. In that formalism, actions are typically implemented as blocking calls.
Events are difficult to handle, as the blocking calls can not be simply interrupted. Furthermore, action
blocks should be abortable. That, as well requires that the blocking calls can be aborted.

The Smach [47] formalism, for example, is based on true concurrency. To be able to abort a block-
ing call the interactions provided by ROS [32] (where Smach is used) are extended with the actionlib
[3]. The actionlib is used to send goals (request) to the ROS nodes (cf. components), requesting
the current state about how the request is progressing and to abort a request. It is not obvious that
this mechanism can be integrated in all algorithms and libraries used in the different nodes. Several
libraries will not provide to cancel the computations as no direct access to the algorithm execution
cycle is granted. Furthermore, using the actionlib, feedback can only be send to the requester of the
action (request). In contradiction, configuring the components and sending the feedback with events
supports that several components can register to the event and receive the feedback.

The SimpleAgenda does not provide concurrency. Thus, each operator is executed until it finishes.
After execution the result string is checked for errors and if necessary matched against the rules in the
KB to recover from contingencies. As no concurrency is supported no synchronisation is required. In
the SimpleAgenda the operators are stored in the KB. They are instantiated at runtime after they are
selected. Once instantiated, the action described in the operator is executed until the action finishes.
Thus, no special care has to be taken to decide whether an operator has finished or not. After execution,
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the operator instance is removed from the task.

RPL, for example, also supports true concurrency. Synchronisation is done by so-called valves.
Tasks which should not run simultaneously compete for a valve. The winner is allowed to run, while
the loser waits for the winner to finish and release the valve. The basic control concept of RPL is
similar to task scheduling in operating systems.

In ESL true concurrency is achieved by using the Lisp multi-tasking library. Synchronization is
based on events and checkpoints. Events are like condition variables except a task can wait on multiple
events simultaneously. Events also pass data to the waiting tasks. Checkpoints are similar to events,
but they persist once they are signalled. Tasks can be grouped with the keywords or—-parallel
and and-parallel. Using or-parallel stops all tasks whether one of the tasks in the group
has finished. The computations of the other tasks in that group are aborted. If all tasks fail, the whole
group fails with : ALL-BRANCHES-FAILED. A and-parallel group is active until all tasks in
that group have finished. Whether one of the tasks fail, the whole group fails with the result of the
tasks which has failed.

In the RAP system the tasks are instances of RAPs. True concurrency is not supported. True
concurrency can be achieved in the skill layer. The lifecycle of a RAP is as follows: The instances
of RAPs are created whether a method of a task has been chosen that contains a network of subtasks
described in form of a task-net. These subtasks are instantiated and added to the RAP agenda. Before
execution, each task’s SUCCESS clause is evaluated in the RAP World Model. If the SUCCESS clause
is evaluated to true the task has finished execution and is removed from the agenda. The evaluation
of the SUCCESS clause is tightly integrated with the RAP World Model. In several situations it is not
applicable to depend on the RAP World Model to evaluate that a task has finished. For example, a task
responsible for speech output depends on a RAP World Model entry specifying that the given text was
spoken by the system. That is not reasonable — the task has to update the RAP World Model according
to the spoken text, but “somehow” that entry has to be removed after the task has finished. That is
necessary that the next time the same text has to be spoken the SUCCESS clause of the task will not
be evaluated to true because of an old entry in the RAP World Model and the task will be finished
without execution. Of course, to overcome that a timestamp could be added to the RAP World Model
entry. But then a timespan has to be defined in that the SUCCESS clause is evaluated to true whether
the entry exists in the RAP World Model. Another example is given by a task that is responsible to
drive to a specific location (coordinates given as ?x ?y). In RAP the SUCCESS clause would look like:

(SUCCESS (and
(= robot—pos—x ?x)
(= robot—pos—y ?y)))

But this SUCCESS clause only checks for the exact coordinates. A real robot is never able to approach
a position as exactly as it is required in that clause. Thus, with real robots a goal circle would have to
be specified. Such a goal circle is hard to include in the SUCCESS clause.

Not relying on true concurrency can be achieved by utilizing state chart as, for example, described
in [39]. That approach uses the state chart implementation Visual State [48]. Only the entry and exit
actions of the states are used. The do action is never used in that approach as it is not obvious how
the semantic of the do action is defined. It is not clear whether the do action is executed once or
repeatedly until the state is finished. For the computation in the entry/exit action only non-blocking
calls or blocking calls with a fast response time (several milliseconds) are allowed. Parallel execution
is supported by parallel regions. The entry actions of the parallel states are executed one after another.
As the computations take just very little time, quasi-parallelism is achieved. Typically, the components
are configured and activated within the entry action and the feedback of the execution is send by events
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from the components to the state chart. Thus, the configuration of the components and the feedback
send back is decoupled.

Therefore, the aspect of parallel execution seems to be best addressed by a quasi-parallel formal-
ism as, for example, supported by Visual State.

4.2.4 Representation of Action Blocks

This section discusses the structure of the action blocks.

The basic idea in RAP is that — the task decomposition, providing different tactics to achieve
a goal (methods), monitoring, error recovery and checking of pre- and post-conditions should be
represented in the same “package” (RAP). Thus, all methods within one package are restricted to the
same set of input/output variables (signature). Furthermore, as the RAPs are stored in a self-contained
way, reusing contingency handling strategies (xRAP with-repairs), for example, in other RAP
definitions is not supported.

In RAP the variants are stored in two levels. It is distinguished between tasks (RAP instances) and
methods inside the RAPs. This distinction is a design aspect, that is the tasks are stored in the described
structures. As a result, adding a new method requires to modify the whole RAP description. Adding
variants will be more comfortable whether the different variants of the same task are not wrapped by
one entity, but are stored as standalone entities.

In the SimpleAgenda, for example, in contrast to RAP the operators and rules are stored in the KB
as single entities. The rules are assigned to the operators.

4.2.5 Action Block Selection at Runtime

Action block selection at runtime is, for example, supported by SimpleAgenda, RAP, RPL, ESL,
PLEXIL and TDL. Different strategies how to select the most appropriate task are used.

In the SimpleAgenda the operators are stored in the KB. At runtime the operator described in the
current active task is matched against the operator stored in the KB. For that matching the name of the
operator and the binding of the input variables are taken into account. The SimpleAgenda does not
provide a way to describe a precondition for an operator.

One question concerning preconditions is whether the precondition has to remain true during the
execution of the task or has just to be true at the moment of the selection of the task and can change
during execution. In the RAP system that is distinguished by providing a precondition clause that
specifies a condition that has to be true during task selection (before execution) and a constraints
clause that has to be true during execution. Constraints are inherited to the subtasks. Unfortunately it
is not obvious how to monitor the constraints during task execution. In the RAP system that is done
by using the RAP World Model. As soon as the state of the world changes, this has to be synchronized
with the world model. This tight integration is one of the major limitations of the RAP system.

Furthermore, in RAP the different variants of a task are encoded within different methods of the
same RAP description, as described in the following:

(DEFINE—RAP
(INDEX (load—into—truck ?object))
(SUCCESS (location ?object in—truck))
(METHOD
(CONTEXT (<world—model—query >))
(TASK—NET

(el (..0))))
(METHOD
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(CONTEXT (<world—model—query >))
(TASK—NET
(el C...)))))
The above RAP example shows a RAP containing two methods. The context specifies those situations
in which the methods can be applied. A method context needs only to be true when the method is
chosen and not during execution (cf. RAP precondition). If several methods are applicable in a given
situation the RAP system chooses one of them at random.
In the RAP system the task is selected by the interpreter according to the following algorithm [10]:

e Choose a task (RAP instance) from the agenda.

e Check the task against the RAP World Model to see if it is finished.

If the task is not finished, check its methods and choose one that is appropriate in the current
situation.

If the method is a primitive (leaf node) execute the action.

If the method is a network of subtasks, put the subtasks on the agenda.

To select a task in the RAP system, the tasks in the agenda are checked if they are “eligible”. A task
is ineligible when any of the following situations hold true:

e Any task constraining the task has not finished execution.
o All of the assigned start times have not yet passed.

o The task has a constraint to wait.
To select among the eligible tasks the following heuristics are used [10]:

e Prefer higher priority task.
e Prefer tasks with deadlines that are closer.

Prefer tasks that have never failed.

Prefer tasks from the same family as the last task chosen.

If there are still several tasks in contention, choose one at random
The task selection is based on the following constraints:

e Ordering constraints between tasks.
e Temporal constraints.

e Memory content constraints.

The RAP system does not provide already bound input variables. The distinction between tasks (RAP
instances) and methods inside the RAPs make things more complicated, as the selection is organized
in two steps. Two different clauses (precondition and context) are used for the same purpose, but at
different levels. As mention above, the task selection is restricted to the queries applicable to the RAP
World Model.

PLEXIL/DL [25] is an extension of the PLEXIL language. Description Logic (DL) [5] queries are
used to describe complex context expressions. To specify DL queries only a decideable fragment of
First-Order-Logic (FOL) is used. The DL queries can, for example, be used in lookup expression (c.f.
preconditions) to make the execution of the tasks depending on the query result.
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4.3 SMARTTCL Concept

In this section the concept of SmartTCL is presented. It is discussed how the complex of problemes is
addressed by SMARTTCL. The different aspects are presented without any implementation details in
mind. Further details on aspects of the reference implementation are presented in chapter 5.

4.3.1 The System Architecture

The basic idea how the Three Layer Architecture (fig. 4.4) is applied in this work is described in
[40] [42]. The major difference to the Animate Agent Architecture is that the sequencer is seen as the
determining mechanism to achieve a goal. Goals are specified in the sequencing layer. They provide
the place to store procedural knowledge on how to configure the skills to behaviors, when to use the
deliberative layer and what kind of action plots are suitable to achieve certain goals. The deliberative
layer is considered by a node in the sequencing layer, that gathers the information necessary to process
the request and passes this information to the appropriate tool in the deliberative layer.

Deliberative Layer g
Symbolic Task Planner (e.g. Metric—FF, FF, LAMA) §
Simulation (e.g. Gazebo) g
Analysis Tools (realtime schedulability, preformance) §

 ;
SmartTCL Knowledge Base g
Agenda Interpreter Task Library 4:)
—D O}é > | Skill Representation 5
O Knowledge about World “é
 ;

Skills

Robot Base Driver Path Planner %
Mapper  Laser Scanner Driver Motion Control =
Object Recognition Speech Interaction ®

Figure 4.4: Instantiation of the Three Layer Architecture how it is used in this work.

That design decisions result in a Three Layer Architecture where the so-called skill layer com-
prises components mainly operating on the level of sensors and actuators. These components typically
provide services for map building, path planning, speech interaction, object recognition and motion
control. The sequencing layer, which is the focus of this work, is responsible for the situation-driven
task execution. Therefor the sequencer performs dynamic online reconfiguration of the components.
Finally, the deliberative layer processes time-consuming algorithms, like symbolic task planning, sim-
ulations (e.g. physics simulators), system analysis (e.g. realtime schedulability analysis, performance
analysis) and risk analysis of plans or plan steps.

Further details on the concrete implementation of the Three Layer Architecture how it is applied
together with the reference implementation of SMARTTCL are illustrated in chapter 5.
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4.3.2 Interfacing between the Layers

This subsection discusses how the three layers communicate with each other. It focuses on describing
which kind of interaction is required by SMARTTCL. The communication between the different layers
is based on the concepts and mechanisms provided by SMARTSOFT (fig. 4.5). The sequencer, as
well as the tools used in the deliberative layer are wrapped by SMARTSOFT components. Thus,
from a communication point of view there is no difference whether the sequencer interacts with the
components in the skill layer or the deliberative layer. Using only one communication infrastructure
eases the overall architecture.

Agenda Interpreter

Sequencing
Layer

it

Tasks

Interface
Handler
‘et RN
Deliberative Symbolic |P_hysics Path | | Mapper Skill
Layer Planner Simulator Planner Layer

Analysis
Tools

Figure 4.5: Interface between sequencing layer and skill/deliberative layer. The same concepts pro-
vided by SMARTSOFT are used.

Motion
Control

The interaction is based on a subset of the communication mechanisms provided by SMARTSOFT.
They include:

Dynamic Online Reconfiguration: The sequencer uses the param port to send parameters to the
components, the state port to activate/deactivate the components and the wiring port to
change the wiring between the components at runtime.

Event Pattern: Events are used as asynchronous notification to send feedback from the components
to the sequencer. Using events, blocking calls can be omitted. Typically, the components are
set into the corresponding configuration, process their algorithm according to the concept of
local responsibility and send an event either if the goal has been achieved or any contingency
occurred.

Query Pattern: Request/Response interaction is used to gather information from the components.
That kind of interaction is required, for example, to request information about the recognized
objects from a object recognition component.

Details, how the interfacing is realized in the reference implementation are given in chapter 5.
Further hints, how vision based behaviors can be interfaced with SMARTSOFT can be found in [40].

4.3.3 Agenda Structure

SmartTCL is based on task-nets. Actions can be executed in each level of the task expansion. A node
in the SMARTTCL task tree is called Task Coordination Blocks (TCB). It is the only node type in the
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task tree. Supporting only one structure for all nodes defines a clear overall structure and eases the
usage for the behavior developers. The TCB structure is described in section 4.3.5.

parallel one-of

tcb-5 tcb-6

[ tcb—1

tcb-5 | tcb—6 labort |

Figure 4.6: top: Task-net expansion example. botfom: Shows an exemplary execution of the above
illustrated task-net.

Figure 4.6 shows an example of a task net. On the top, the task net structure is shown. On the
bottom, an exemplary execution sequence of the task net is illustrated. The task t cb—1 first expands
the three parallel nodes tcb-2a, tcb-2b and tcb-2c. They are marked with the one-of label,
indicating that the other tasks will be aborted whether one of the tasks has finished. The tasks t cb-2a
and tcb-2b are further expanded. Tcb-3a and tcb-3b run in parallel. After both have finished
execution the task tcb-4 is executed. Parallel to that execution tcb—5 and tcb-6 are executed
in sequence. After tcb—4 has finished t cb—-2a is still active (waiting for an event). As the three
tasks are marked as one-of, the tasks t cb—2b and tcb-2c are aborted after t cb—2a has finished.
Aborting tcb-2b includes aborting t cb-6 which is a child and was still active. Afterwards the
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parallel tasks tcb-7a and tcb-7b are executed. Both have to be finished before the next step
(tcb-8) is expanded. Finally, after t cb—8 has finished tcb—9a and tcb—-9b are executed. The
completion of t cb—9b results in aborting t cb-9a and also the completion of tcb-1.

4.3.4 Underlying Formalism of Interpreter

The execution cycle of the interpreter is triggered with events. They provide an asynchronous notifi-
cation from the components of the skill and deliberative layer. Events decouple the configuration of
the components from the feedback send by the components and thus prevent blocking calls. This is
important to support parallel activities without the need for true concurrency (multiprocessing). Con-
currency in the task execution is achieved by executing the action of the nodes one after another. That
quasi-parallel (fig. 4.7) execution mechanism requires that the actions should not execute computa-

action <<TCB>>

T

action <<TCB>>

v

Figure 4.7: Quasi-parallel task execution.

tions or invoke blocking calls that take a long time relative to the time expected from the sequencer.
True concurrency is achieved in the skill layer. Making the actions asynchronous furthermore pro-
vides to abort a task (node) independent of the skill layer. The computations in the skill layer can
continue (if not possible to abort) without having any influence on the sequencer.

TCBs are stored in the KB. At runtime an appropriate task is selected and instantiated. A TCB has
finished its execution if

e the action clause was executed,
e all children have finished

e and no more events are activated.

Finished tasks provide a return message to their parent 7CB which is evaluated to react on failures.
Therefore, TCBs can have associated rules to recover from situations by executing the action clause
of the rule. Rules are stored in the KB. They are specific to a TCB signature and a return-value that
specifies the reason for the failure.

After instantiating a TCB its action clause is executed. If no events are activated in the action
clause and no TCBs are stored on the stack, the TCB is finished. If there is an entry on the stack, the
included TCB or TCBs are instantiated and thus their action clauses are executed. In case that all child
TCBs have finished their execution (the stack is empty) and an event is activated the 7CB remains
active, waiting for the event.

4.3.5 Task Coordination Block (T'CB)

In SMARTTCL the TCBs are stored as standalone entities in the KB. Standalone entities can easier be
handled at runtime. For example, modifing or adding TCBs within the action clauses of other TCBs,
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rules or event-handlers.

The nodes of the task-tree are instances of a Task Coordination Block (TCB) (fig. 4.8). The
TCBs are stored in the KB (TCL-Library) and instantiated at runtime. Several TCBs with the same
purpose can exist with different signatures. The final selection which one of them will be executed
is preformed at runtime. 7CBs are identified by their signature (name, input/output variables) and
precondition clause. TCBs with the same purpose (e.g. drive—to) can have different input/output
variables (e.g. drive—-to ?location; drive-to ?x ?y). The first one is used to drive to a
location given by name. The latter is used if the location is given by coordinates (x, y). Input variables
can already be bound in the TCB definition. The drive-to ?location, for example, can have
variants with already bound locations (e.g. drive-to sofa;drive-to table). These already
bound variables are taken into account in the task selection at runtime. Specifying already bound
variables provides the ability to define further situation dependent 7CBs.

Task Coordination Block (TCB)

o |tcb—name : <name>

% input variables  : <list of variables>

5 |output variables : <list of variables>

‘o |precondition : <conditon>

priority : <integer>

rules : <list of rules (names)>
action . <action description>
abort-action . <action description>
plan : <child TCBs>

Figure 4.8: Representation of a Task Coordination Block (TCB).

Furthermore, TCBs with the same name and input/output variables can have different precondi-
tions. A precondition describes the condition that has to be true to execute the 7CB.

TCBs have an associated priotity which is used for the final task selection at runtime. In case
several TCBs with their preconditions match and could theoretically be executed, the final selection
among them considers the priority.

TCBs have a parent/child relationship to support hierarchical task decomposition. A TCB can
describe primitive, as well as complex behaviors. Primitive behaviors are encoded within the action
clause. Complex behaviors are composed out of other TCBs (children). The children are defined as
steps in the plan clause. The default execution policy of child TCBs is sequential. Otherwise, parallel
execution of children is supported, for example, by the keywords parallel and one-of. A block of
children marked as parallel is active until all children have finished their execution. If a TCB in a
one-of block has finished, the other TCBs are aborted. Aborting a TCB involves the execution of the
abort-action clause to support cleanup actions.

The synchronisation between the 7CBs and the other layers is realized with events. Events are
activated within an action clause. Each event can have several event-handlers which are stored in the
KB. In the event activation one of the event-handlers which is appropriate is assigned to the event.

4.3.6 Information Exchange between TCBs

The different tasks have to exchange information during execution.
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The RAPs provide input/output variables for the tasks. Furthermore, the RAP World Model can
be used to store and retrieve information. As ESL is an extension to Lisp, the Lisp constructs for
variable handling are used. Additionally, a special task group called task-net which is similar to the
and-parallel group is provided. The difference is that task-nets in ESL create a lexical environ-
ment where all the input variables are bound to the subtasks.

The SimpleAgenda only supports input variables. Furthermore a KB is used to store and retrieve
further information.

In ESL a Prolog based backchaining logical database is used. Local variables are designated by
symbols whose print name begin with a question mark. To access the logical database, functions like
DB-ASSERT, DB-RETRACT and DB-QUERY are supported.

?name = Alice

approach-person /
input-variables :(?name
output-variables : - 2name = Alice
3 look—for—person /

§ input—variables .

g; output-variables GOx 2y —
= 1 ?x =2000; ?y = 3500
& | [drive-to M

o . . ‘/

input-variables
v output-variables : -

Figure 4.9: Example shows how variables are used to pass information from one 7CB to another one
and how to pass variables from the parent 7CB to its children.

Information exchange between TCBs is mainly based on the concept of input/output variables (fig.
4.9) in a similar way it is, for example, done in RAP. Input variables have to be bound before the TCB
is selected. It has to be ensured, that (i) one of the beforehand executed TCBs needs to specify the
input variables as its output or (ii) the input variables are specified as input variables of the parent
TCB and are thus already bound. That requires, that each TCB binds its output variables. If a TCB
execution fails and thus the output variables could not be bound, the rule handling that contingency

has to bind the output variables. More details on contingency handling with rules are described in
section 4.3.8.

Additionally, information can be exchanged using a KB. The KB has at least to provide a simple
tell/ask interface for frames. This functionality is required to store and retrieve the SMARTTCL
structures (TCBs, rules, event-handlers). If further features are necessary more advanced KB systems
can be integrated. They typically provide inference and reasoning capabilities. Recognized objects,
for example, are stored in the KB and are enriched with further information which is already available
due to the knowledge about “known” objects. This knowledge, for example, includes properties about
an object, like can be stacked into another object and the exact mesh representation which will be
required for collision free path planning and grasping calculations.
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4.3.7 TCB selection at Runtime

The final selection which TCB is executed is performed at runtime. In the plan clause of the parent
TCB just the name and input/output variables are specified. It is not specified exactly which TCB
should be executed. In the TCL-Library several different variants of a T7CB with the same name can
exist for a huge variety of different situations. Figure 4.10, for example, shows some TCBs stored in
the TCL-Library. For the drive—to TCB different variants are specified. That includes different
input/output variables and also already bound input variables. In the example, the task-net asks for a
TCB drive-to sofa which is successfully matched against the TCL-Library.

SmartTCL Knowledge Base
Agenda TCL-Library
(drive—to ?x ?y follow—person ...
(drive—to 0 0 memorize ?loc.

N G r—)

) (
) (

(drive—to ?location ) (say ?text
) (.

+(drive-to sofa

Figure 4.10: Selection of a TCB. A variety of different TCBs for the same purpose is stored in the KB
(TCL-Library).

The selection is performed according to the following algorithm:

e the number of input and output variables as well as the binding of the input variables are
matched against the 7CBs in the KB. TCBs can define already bound input variables.

o the precondition clause is evaluated if one is defined in the TCB description. Otherwise, the
result is evaluated to true. In the precondition, for example, the current configuration of the
components which are stored in the KB can be considered.

e out of the remaining 7CBs the one with the highest priority is selected.

4.3.8 Feedback from 7TCB Execution — Contingency Handling

This section discusses how feedback is send from tasks that have finished their execution and how to
react on that feeedback. In most languages the contingency handling is based on the philosophy of
cognizant failures [29], stating that systems should be designed to detect failures when they occur.
Thus, the system can react appropriately to these contingencies.

In the standard RAP system there was no specific construct to react on contingencies. The common
way is, that a RAP is executed again and again as long it is not finished and the maximum number of
retries is not exceeded. Thus, the same RAP is applied several times, hoping that another try will solve
the problem?. Furthermore, constructs exist to start another RAP whether the currently active RAP has
failed (constraints). In xRAP, the RAP definition is extended by the keywords with-cleanup and
with-repair to react on contingencies. Inside these constructs, new tasks can be added to the
agenda to react on the failure. There is no support to directly execute an action to react on contingen-
cies.

3 A futility threshold is supported to avoid futile loops.
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Rule

name . <hame>

tcb—name . <tcb—-name>

tcb output variables : <list of variables>
tcb input variables  : <list of variables>
return-value . <return message>
action . <action description>

Figure 4.11: TCB rule to handle contingencies.

In the SimpleAgenda contingency handling is based on rules. Rules describe in their action clause
how to recover from the contingency. Rules are specific to an operator. Several rules for the same
operator can exist in parallel but with a different return-value. The return-value specifies the failure
returned whether the execution of an operator fails. This return-value is matched against the rules
which are assigned to the operator. All rules are stored in the KB.

In ESL a similar concept to the SimpleAgenda rules is proposed. The concept is called with-
recovery-procedures. It provides to specify a cause for the failure which is matched against
the return value of the task. An action is directly executed in case the recovery procedure is applied.
Furthermore a retries statement is supported to describe how often the recovery procedure can be in-
voked during the current scope. Nevertheless, the recovery procedures in ESL are not directly assigned
to a task. Thus they are used in a very generic way.

In SMARTTCL the reaction to failures is defined by rules (fig. 4.11) similar to the SimpleAgenda.
Whenever a TCB returns from its execution, the return value is checked whether it contains an error.
In this case the error message is matched against the rules stored in the KB which are activated within
the parent TCB. The rules action clause is executed to recover from the situation. Rules are specific to
the name and input/output variables of the TCB. That is important especially in case the TCB defines
output variables that could not be bound during 7CB execution because of the failure. These variables
have then to be bound by the rule.

The rules for a TCB are assigned in the parent definition to provide more flexibility. The same
TCB definition can be reused with a different set of rules depending on situation and context. That
allows to handle the same failure occuring in the same 7CB in different ways.

4.3.9 Component Representation in KB

Each component of the system is represented in the KB with the associated information about current
state, parametrization, constraints and resource information. That representation can be used in the
precondition clause to be able to define variants applicable, depending on different configurations
of the components. The information about the components can, for example, be retrieved from the
MDSD model created during development of the components. Further information on that aspect can
be found in [41] [50]. Figure 4.12 shows an example how the components are represented in the KB.

In the example the state, parametrization and resources are shown. These properties can be used,
for example, in the precondition clause.
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Knowledge Base (KB)

name : CDL
state . "neutral”
parameter
strategy : followPerson
freebehavior  : activate
lookuptable . default
goalmode . person
eapproachdist : 500
i .
resources
task—1
period : 100ms
wcet : 5ms
requires
CommMobileLaserScan
name : LASERPERSONTRACKER
state . "neutral”
slots i

Figure 4.12: Example representation of components in the KB.

4.3.10 Event Management

Events are the basic mechanism to synchronize the task execution, decomposition and abortion.
Events can be activated in the action clause of a TCB. The events are directly mapped onto the SMART-
SOFT events.

Event-Handler

name . <name> o
action . <action description>

Figure 4.13: Event handler representation.

Each event in SMARTTCL has an associated event-handler (fig. 4.13) which is stored in the KB.
An event-handler can be reused in several event activations. Different kinds of reactions are supported
and can be described in the action clause of the event-handler to handle common situation, like: @ the
path-planner sends an event that indicates that no path to the given goal could be found. The reaction
will be to clear the current map and to preoccupy it with the longterm map. The corresponding
TCB remains active. @ the path-planner sends an event that indicates that the desired goal has been
reached. In the action clause the path-planner, cdl and mapper components are deactivated to save
computational resources. Furthermore the corresponding 7CB is finished and returns to the parent
with return-value SUCCESS.

4.3.11 Calling the Deliberative Layer

The sequencing layer calls the deliberative layer in situations, where the sequencer is not able to
decide about the further execution and expansion of the task-tree. The deliberative layer can be
invoked from the action clause, either directly from a TCB, an event-handler or a rule. This allows,
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for example, to call symbolic task planners (FF, Metric-FF, LAMA), simulators (Gazebo [17]) and
analysis tools (Cheddar [8]). The required information to perform the request is gathered in the
action clause and forwarded to the corresponding component in the deliberative layer. Based on the
feedback, the current plan is modified. Examples how a symbolic planner is integrated are given in
chapter 6.
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Chapter 5

The Lisp-based Implementation of
SMARTTCL

To gain more experience and to proof the concepts and mechanisms described in the previous section,
the Lisp based reference implementation of SMARTTCL is developed. This section illustrates on
some examples how the concepts are implemented in Lisp.

5.1 Instantiation of the Three Layer Architecture

The overall architecture (fig. 5.1) and the communication between the different layers is implemented
using the concepts provided by the SMARTSOFT framework [38]. The mechanisms and tools of the
sequencing layer and deliberative layer are made accessible by SMARTSOFT components and thus
provide precisely defined interfaces.

The SMARTSOFT Framework and the SMARTSOFT MDSD TOOLCHAIN [50] ease the devel-
opment process and ensure compatibility of the components. The SMARTSOFT METAMODEL and
MDSD TOOLCHAIN ensure straightforward development of flexible and reusable components. Pa-
rameters explicated in a modeling level can be accessed during system development, deployment and
at runtime.

The knowledge base (KB) provides a simple tell/ask interface. The currently used KB implemen-
tation is based on Lisp. The implementation is called SimpleKB [35] and is, for example, used by the
SimpleAgenda.

5.2 Aspects of the SMARTSOFT Framework

The basic concept of SMARTSOFT describes loosely coupled components with local responsibilities
and strictly enforced interaction patterns. These patterns provide a precisely defined semantic for com-
munication between components. The set of interaction patterns cover request/response interaction as
well as asynchronous notifications and push services. [38]

Some aspects of the patterns which are of importance for the interfacing between the layers are
described below.

Dynamic online reconfiguration of the components is provided by (i) a param port to send name-
value pairs to the components, (ii) a state port to activate/deactivate component services and (iii)
dynamic wiring to change the connections between the components at runtime.

41
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Figure 5.1: The SMARTSOFT based Three Layer Architecture.

Events are used to asynchronously send information from a server to subscribed clients to inform
them that a specific condition became true. The event pattern is similar to common push services, but
the filtering of the events takes place at the server side according to the parametrization of the event
activation. Events are activated by sending a communication object containing the reference values
needed for the test, whether the event should be fired or not. Every event can be activated several
times simultaneously with individual parameters. It fires if the event condition is true considering the
corresponding parameters. Therefore the event pattern provides an event-test-handler at the server
side which has to be implemented by the component developer.

| |
" testEvent 10 < 11y,

putit i EEEVE IR < T event

1| activate 12 |

T g=T  testEvent12 <11
1 ————— "

3 activate 10 !
| id=2 | | deactivate 1
put 11 i
" ' | deactivate 2
server | client server | client
side 1 side side 1 side

Figure 5.2: Event pattern example demonstrating the battery state event of the robot base component.

Fig. 5.2 demonstrates the usage of the event pattern by the example of the battery event of the
robot base component. The event is fired in case the current voltage of the robot’s battery is below the
activation parameter. On the server side the event test handler are triggered by calling the put method
with the current state of the event. In the example, the first call of put has no effect, since no events are
activated. Afterwards two events with parameters 10 and 12 are activated. Each event is associated
with an unique id. The next call to put triggers the event test handler, each for every activated event.
If the condition is true, the event is fired.
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Queries are used to gather specific non-recurring information from components. The query object
has to contain all information needed by the server to process the request. The answer is sent back as
an answer object. The server can handle the incoming queries either passive or active (queuing them
and processing them in a separate thread). The client side supports asynchronous as well as blocking
queries.

5.3 Language Extension vs. Standalone Language

SMARTTCL is a language extension to Lisp. Thus, basic mechanisms provided by Lisp can be used
within SMARTTCL.

Language extensions have the advantage, that basic mechanisms provided by the existing lan-
guage like conditions and looping constructs, for example, can be used within the new language. The
new language has the expressiveness of the existing language on its own. Thus, the development time
of the new language is reduced and the focus can be laid on the development of the new concepts
instead of implementing basic programming language mechanisms. Furthermore, the exact set of
basic mechanisms is hard to define. Language extensions ensure the flexibility that behavior develop-
ers are not restricted to a predefined (maybe too much restricted) subset of mechanisms. Otherwise,
the behavior developers are not allowed to use the whole set of mechanisms the existing language
provides. For example, using synchronisation constructs or multitasking mechanisms leverages the
mechanisms provided by the new language. This requires a documentation giving the hints, what kind
of mechanisms are allowed in which situation.

In general, standalone languages have the advantages, that they are typically easier to analyse and
verify [22]. But the expressiveness is limited. Taking, for example, a closer look into the standalone
language RAP, shows that the so-called primitives are implemented in Lisp. The RAP language is not
expressive enough to encode all aspects needed to describe the primitive behaviors. For the imple-
mentation of the primitives only a subset of Lisp is allowed for the same reasons as described above
for the language extensions.

Thus, the focus of this work is to define the mechanisms and constructs that are necessary to
describe the behavior for service robots. For a “first” reference implementation, that can be used for
implementing real-world scenarios the decision comes to a language extension. After gaining enough
experience to be able to define a standalone language that addresses all aspects necessary to implement
real-world scenarios this can be the way to go. Independent of that decision such a new language can
nowadays be implemented as a domain specific language (DSL) [19] within the Eclipse Framework,
for example. The Eclipse Modeling Framework (EMF) [1] provides the tools to define and verify
DSL’s. But again, for a first step the additional work to define a new DSL based on EMF is omitted
due to time constraints.

Therefore, the most important contribution of this work is the mechanisms and concepts. They
are independent of the implementation technology. However, for the reference implementation Lisp is
used. The major advantage of Lisp is the reduced development time. This is because Lisp compilers
are designed to be incremental and interactive. Running programs can easily be modified without
stopping and restarting the program. The previous state of the program is preserved. This holds not
just true for the development of the new language, but also for the development of the behaviors
using the new language. Furthermore Lisp provides powerful abstraction facilities that allow to write
complex algorithms in a few lines of code. Especially the constructs for unification and dynamic
binding of variables can comfortably be implemented in Lisp. [16]

Details how Lisp is interfaced to SMARTSOFT/C++ can be found in [33].
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5.4 Task Coordination Block (TCB)

The TCB definition is described using the following syntax:

(define—tcb (tcb—name ?7x ?y => ?7z)
(precondition (<lisp condition >))
(priority <number>)
(rules (rule—1 rule —2))
(action (<lisp code>))
(abort—action (<lisp code>))
(plan ( [parallel lone—of] <list of tcbs> )))

Using Lisp Makros the TCB definition is stored in the KB.

The following example illustrates a TCB definition used to drive to a specific location which is
given as input variable.
(define—tcb (approach—location ?location)

(rules (wrong—map unknown—location maps—not—connected))

(plan (
(get—pos—from—location ?location => ?7x ?y)
(drive—to—pos ?x ?y 500))))

The TCB has no action/abort-action clauses. It defines three rules to handle different contingencies.
The TCB contains a plan with two sequential steps. The first one binds the variables ?x and ?y to the
coordinates of the given ?1ocation. The second one then is responsible to approaches the location
with a proximity of 500mm.

5.5 Task-Net and Interpreter Structure

tcb-1

STACK
<<one-of>> tcb-2¢ |
<<p§1r3)leb‘>‘ tcb-3a| tcb-3b |~ i

- tols—4 N abort || -~
<<one-of>>-tfcb-5a[ tcb-5b | s |action

| [tcb-2c

STACK

tch—6a] tcb—6b] action
o7 Jteb=7-3 |

.+ [tcb-8a] tcb-8b]

R 0 action

Figure 5.3: Task-Net structure: Child 7CBs are managed within a stack in the parent TCB. TCBs can
be grouped as parallel or one-of groups in one stack entry.

The TCBs have a parent/child relationship with constraints describing whether they run in se-
quence or in parallel (parallel, one-of). In the approach applied in this work, these constraints are
directly mapped onto the structure the task-net is stored. It is stored as a task-tree reflecting the paren-
t/child relationship. A TCB manages its children within a stack (fig. 5.3). That reflects the sequential
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ordering. Parallel execution is addressed as a stack entry can contain multiple 7CBs. Entries con-
taining multiple TCBs are assigned with the properties whether they follow the parallel or one-of
paradigm. Furthermore, the stack can easily be modified at runtime. If a TCB execution fails, the
rule handling that contingency could, for example, push another or several TCBs on the stack. After
successfully executing these TCBs the actual TCB execution continuous.

5.6 Conditional Task Execution

The final selection of a TCB is done at runtime. The TCB selection is performed in several steps
according to the ascending priority. At first, the number of input and output variables as well as the
binding of the input variables are matched against the T7CBs in the KB. TCBs can define already bound
input variables. The second step is to evaluate the precondition clause if one is defined in the TCB
description. Otherwise, the result is evaluated to true. In the precondition, Lisp conditions as well as
TCL specific function can be used. This allows, for example, to consider the current configuration of
the components, which are stored in the KB. As the selection is performed in the ascending priority,
the first match is taken for execution.

5.7 Binding of Variables

Figure 5.4 shows the binding of variables in two different situations. On the one hand, the variable
bindings are passed from the parent T7CB to its children and between the children. Whether a child
TCB defines an already existing variable as output the variable value is overwritten. Thus, the parent
TCB defines a scope for the variables used by the children.

approach—location @location )

ST

drive—to—pog ?x ?y 500
~ g

approach-location ?location /

ST el _

drive—to—pog ?x ?y 500) 2 e
. drive—to—poﬁﬂ %2 ?X:D

~ % = ?x1
o r 2y = ?7x2 /

.. | 500=7x3

Figure 5.4: top: Binding of variables between parent and children. bottom: Mapping of external and
internal names of the variables.

On the other hand, the names of the variables can differ between the external representation and
the internal representation of a TCB. These different representations are mapped and the mapping is
stored in the TCB. Each TCB manages its “own” mapping of the external and its internal names of the



46 CHAPTER 5. THE LISP-BASED IMPLEMENTATION OF SMARTTCL

variables. That mapping is especially important for the ouput variables. The output variable (external
name) has to be assigned with the value instead adding the internal representation with the assigned
value to the scope of the parent.

5.8 The Action Clause

Actions are defined within the TCBs (action, abort-action), rules and event-handler. They can contain

SMARTTCL specific functions and Lisp code, with certain restrictions. Actions should not execute

computations or invoke blocking calls that take a long time relative to the reactivity which is expected

from the sequencer. This is important since SMARTTCL does not support true concurrency.
SmartTCL specific functions are:

tcl-param (server slot value) to send parameters to a component specified by server. The parameter
is send by a name/value pair where slot specifies the name and value specifies the value. Ad-
ditionally the modified parameter is updated in the component representation stored in the KB.
The component representation in the KB specifies the slots taken into account for that update.
This is because it is not reasonable to store every parameter in the component representation.
That, for example, holds true for commands like DELETEGOAL, which is send to the planner
to delete the active goal regions.

tcl-read-param (server slot) to read the parameter value specified by slot from the component repre-
sentation specified by server in the KB. These values are, for example, used in the precondition
clause of the TCBs to support situation dependent decisions depending on the components pa-
rameters. The parameter is not retrieved from the component as that is currently not supported
by SMARTSOFT.

tcl-state (server state) to set the component specified by server into the state specified by state. As
with the parameters, the state is updated in the component representation in the KB.

tcl-read-state (server) to read the state of the component specified by server from the representation
in the KB.

tcl-activate-event (name handler server service mode param) to activate an event with the name
name corresponding to the service specified by server and service. The event-handler is as-
signed to the event. Event-handler are stored in the KB. Furthermore, the mode specifies whether
the event activation is single or continuous. The parameter defines the parametrization of the
event activation (for more information on mode and param see SMARTSOFT documentation).

tcl-event-message returns the event message for further processing. Can only be used inside of
the event-handler, as the invoking event is known there. The event message can be any Lisp
structure.

tcl-delete-event deletes the event which invoked the event-handler. Can only be used inside of the
event-handler, as the invoking event is known there. By default events with the assigned mode
continuous remain active until they are deletetd.

tcl-query (server service request) to send a query specified by request to the component specified
by server and service.
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tcl-send (server service param) to send parameters and commands to the component specified by
server and service.

tcl-abort to abort a TCB. Can, for example be called from a rule or event-handler. The abort is
forwarded to all children of the TCB and all activated events are deleted.

tcl-bind-var (name value) to bind a variable specified by name to a value. Is, for example, used to
bind the output variables of a TCB inside the action clause.

tcl-push (tcb) to push a single T7CB on the plan stack.

tcl-push-plan (plan) to push a whole plan on the plan stack.

tcl-delete-plan to delete the plan stack.

tcl-kb-update (key value) to update a frame in the KB. Key specifies the key slots of the frame.

tcl-kb-query (key value) to query a frame from the KB. In case several frames match the query (key,
value) only the first one is returned.

tcl-kb-query-all (key value) to query a list of frames from the KB. All frames matching the query
(key, value) are contained in the list.

5.9 Rules

Rules are specific to the exact signature of the 7CB. That is important especially in case the TCB
defines output variables that could not be bound during the TCB execution because of the failure.
These variables have then to be bound by the rule.

The following rule, for example,

(define —rule (unknown—location)
(tcb (get—pos—from—location ?location => ?7x ?y))
(return—value (ERROR (UNKNOWN LOCATION)))
(action (
(tcl—delete —plan)
(tcl —push—plan :plan ’(
(say "I don not know this location. Please
show me. I will follow you.")
(parallel (
(follow —person) (memorize—locations ))))))))

is associated to the get —-pos-from-location ?location => ?x ?y TCB which isrespon-
sible to resolve the position from a by name given location. The rule will be executed if it is activated
in the parent TCB and the return-value is (ERROR (UNKNOWN LOCATION) ). In the action clause,
at first the current plan of the TCB is deleted. Afterwards a new plan is inserted, which contains the
steps: @ announce text (say) @ run follow-person and memorize-locations in parallel. Several rules
for the same TCB and return-value can exist, but only the desired one should be activated in the parent
TCB.
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5.10 Events and Event-Handler

The events are directly mapped onto the SMARTSOFT event pattern.
The example event activation, called from a TCB action clause illustrates the activation of the
goalevent of the cdl component.
(tcl—activate —event
:name ‘evt—cdlgoal
:handler “handler—cdl
:server cdl

:service ’goalevent
:mode ’continuous)

The event has the name evt-cdlgoal and an assigned event-handler with the name handler-cdl. The
event activation mode is continuous.
An event can be deleted by calling the tcb-delete—-event function. Furthermore, if the
abort-action of a TCB is called, all activated events if the TCB are automatically deleted.
The event handler which is, for example, assigned to the evt-cdlgoal is shown below:
(define —event—handler (handler—cdl)
(action (
(tcl—state :server ’cdl :state "neutral")
(tcl—state :server ’'mapper :state "neutral")

(tcl—state :server ’planner :state "neutral")
(tcl—abort))))

In the action clause of the event-handler the components cdl, mapper and planner are deactivated
(state = neutral) and the TCB calling the handler is aborted. That is the activated events are deactivated
and all children are aborted. That causes the 7CB to having finished execution.

5.11 Online Modification of Plans

The plans stored inside the TCB instances can easily be modified at runtime. SMARTTCL functions
are provided to delete the whole plan, delete single steps of a plan, push a new step onto the plan or
push a whole plan onto the current plan. These plan modifications are typically invoked by executing
the actions of an event-handler or a rule to react on events and contingencies.

The example demonstrates a code snippet where the current plan is deleted and a new plan is
pushed onto the stack. The new plan contains two TCBs which run in parallel.
(tcl—delete —plan)
(tcl—push—plan :plan ’((parallel (

(tcb—follow—person)
(tcb—memorize—location)))))



Chapter 6

Experiments and Results

6.1 Example 1: Guided Tour

This scenario addresses several of the use cases. It is composed out of the behaviors “follow person”,
“memorize location” and “approach location”.

In the scenario the robot is guided through its environment by following a person (fig. 6.1). While
following, the person shows the robot different locations, like the sofa, the kitchen or the dinner
table. The person following, as well as the memorizing of the locations is commanded by speech
interaction. Furthermore, the robot can be commanded to approach the locations. In case the location
was not shown to the robot and is thus not approachable, the robot will announce that situation and
ask the person to show it the location. In the whole scenario there is no fixed ordering in that the
behaviors of the robot are applied. The robot can easily be command to follow the person again, after
approaching a location. A already known location can be overwritten by guiding the robot to the new
position of the location and asking it to memorize it. This is, for example, necessary whether the sofa
is moved to a different position. As the different locations can be located in different current map
representations the robot switches between the maps (fig. 6.2) as described in chapter 2.

For guiding the robot around, the behaviors “follow person” and “memorize location” are executed
in parallel. Thus, the robot can be asked to follow a person or to stop following while telling it a new
location. The robot guiding TCB looks as follows:

(define—tcb (tcb—guiding)
(action (
(tcl—send :server ’tts :service ’say—wait
:param "Welcome, my name is Kate. I am new to this
environment. Can someone please show me around.")

[...] ;; some initialization
(tcl—activate —event :name ’evt—approach :handler “handler—approach
iserver ’stt :service ’'sttevent

:mode ’continuous
:param ’(approachLocation 0.3))
(tcl—activate —event :name ’evt—exit :handler ’handler—exit
iserver ’stt :service ’sttevent
:mode ’continuous
:param ’(command 0.3))))
(plan ( (parallel (
(tcb—follow —person)
(tcb—memorize—location))))))

49
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Figure 6.1: Robot Guiding Tour: @ User commands the robot to follow him. @ Robot is following.
® Memorizing the dinner table. @ Memorizing the sofa. ® Memorizing the kitchen. ® Dinner table
approached.



6.1. EXAMPLE 1: GUIDED TOUR 51

Figure 6.2: Approaching a location including switching between maps performed in the STAGE sim-
ulator. The goal is marked by a star, the robot by the smiley. Intermediate goals are illustrated as
blue circles. The surrounding colored area marks the wavefront performed by the path planner. The

currently selected current map is marked by a green rectangle. On the top left image the path the robot
will drive to the goal location is illustrated exemplary.
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At the beginning of the action clause execution a text is send to the speech synthesis compo-
nent. Afterwards, some initialization is performed. Finally, two events are activated on the speech
recognition component. The first one is fired whether the person asks the robot to approach a specific
location. The second one is fired whether the person asks the robot to exit the scenario!. The plan
clause contains the two parallel 7CBs “follow person” and “memorize location”.

In case the approach-event is fired the assigned handler—-approach handler is executed. The
handler looks as follows:

(define—event—handler (handler—approach)
(action (
(tcl—send :server ’tts :service ’say
:param (format nil "I will approach the ~s" (second (first
(tcl—event—message )))))
(letx ( (robot—pose (tcl—query :server ’base :service ’pose))
(robot—room (get—room—from—pose (first robot—pose)
(second robot—pose))))

(tcl—kb—update :key ’(is—a)
:value ‘((is—a robot)(current—room ,(get—value
robot—room ’‘name))))
(tcl—delete —plan)
(tcl —push—plan :plan (
(tcb—approach—location
,(second (first (tcl—event—message))))
(parallel (
(tcb—follow —person)
(tcb—memorize—location)))))))))

At first, the robot announces that it will approach the given location. Then, the robot-pose
is queried from the base component. Based on this pose the current room the robot is located in is
determined by calling the helper function get -room-from-pose. The current room is updated
in the KB. Afterwards, the current plan is deleted. Finally, the new plan is inserted. The new plan
comprises the TCB to approach the given location and afterwards executing the “person follow” and
“memorize location” TCBs in parallel. These two parallel TCBs activate the events that the robot
can be commanded to follow a person or to memorize a location. Furthermore, the approach event
is still activated and therefore the robot can also be commanded to approach a different location.
Approaching a location is performed by the following 7CB:

(define—tcb (tcb—approach—location ?location)
(rules (rule—wrong—room rule—unknown—location rule—rooms—not—connected))
(abort—action (
(tcl—state :server ’'cdl :state "neutral")
(tcl—state :server ’mapper :state "neutral")
(tcl—state :server ’planner :state "neutral")))
(plan (
(tcb—get—location —pose ?location => ?x ?y)
(tcb—drive—to—pos ?x ?y 500))))

The TCB contains an abort-action, which will deactivate the components for local motion con-
trol (CDL), mapping and path planning. The plan itself is a sequence of two 7CBs. The first
one resolves the position of the given location and returns the coordinates. The latter is respon-
sible to drive to the given coordinates. Whether the location can not be resolved in the KB by

"Explicitly telling the robot to exit the scenario is part of the Robocup@Home rulebook, for example. In this scenario it
is used to add further situations the robot has to master.
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the tcb—get-location—-pose TCB, it will return with the result value (ERROR (UNKNOWN
LOCATION) ). This contingency will then be handled by the rule rule-unknown-location
which is assigned to the TCB definition as shown in the example. Executing the rule, the robot will
announce that it is not possible to approach the location as it does not know where the location is. The
robot is furthermore configured that it is able to be guided to the location. This is done by pushing the
parallel TCBs “follow person” and “memorize location” on the current plan.

Another contingency occurs, for example, whether the given goal location is not in the same
current map the robot is located in. In that situation the rule rule-rooms—-not—-connected will
be executed. This rule is also assigned to the tcb-approach-location TCB. In the action block of this
rule the knowledge about the maps and the doors between the maps is exported to a PDDL model.
Afterwards, the symbolic task planner LAMA is called and provides feedback, in form of the sequence
in that the maps have to be passed, to the rule. Finally, this generated plan is imported. This is done by
pushing the plan steps onto the plan clause in the TCB. Therefore the plan steps are transformed into
the corresponding SmartTCL representation for a TCB. In the following the plan generated by LAMA
of the example depicted in figure 6.2 is illustrated:

((result ok)
(ops 3)
(plan ((drive —to—room room—5 room—7)

(drive —to—room room—7 room—3)
(drive —to—room room—3 room —2))

The plan contains the result, that the plan could be found (result ok), the number of operators
(ops 3) and the plan itself. This plan is, for example, transformed into the SMARTTCL plan steps,
which are pushed onto the plan after deleting the whole plan:

(tcb—drive —to—room ’room—7)
(tcb—drive —to—room ’room —3)
(tcb—drive —to—room ’room—2)

The scenario is completely implemented as part of this work and performed in the STAGE sim-
ulator, as well as in the real world with the robot “Kate”. Further information on the execution are
depicted in figure 6.1 and 6.2. The example demonstrates the successful coverage of several of the
requirements, such as hierarchical tasks, composition of tasks, parallel execution, managing events,
handling contingencies, plan modification at runtime, integration of a symbolic task planner and task
selection at runtime.

6.2 Example 2: Cleanup Table Scenario

In this scenario the robot has to cleanup a table. The scenario is an extension of the scenario published
on youtube?. The basic idea is already described in the use cases in chapter 2. The robot approaches
the dinner table in case it is asked to cleanup the table. It recognizes the objects on the table and
throws them either into the kitchen sink or into the trash bin. Three different objects exist: crisp
cans, beverage cans and cups. The cups can be stacked into each other and have to be thrown into
the kitchen sink. The beverage cans can be stacked into the crisp can, but have to be thrown into the
trash bin. As the huge amount of different situations of objects on the table is unknown beforehand a
symbolic planner generates the sequence how to stack the objects and throw them away.

One challenge to build this scenario is how to export the PDDL model to the symbolic task plan-
ner and how to import the found solution. The task planner has to provide capabilities to express

http://www.youtube.com/roboticsathsulm#p/u/5/40d4D1k5LCQ
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constraints. The amount of objects that can be stacked into each other is constrained. For example,
only three cups can be stacked into each other. Furthermore always the single cup has to be stacked
into a stack of cups. Two beverage cans can be stacked into one crisp can. These constraints have to
be taken into account by the symbolic planner. Therefore, the Metric-FF planner is chosen. For that
decision the standard FF, Metric-FF and LAMA planners were taken into account. Metric-FF is the
only one of them which is able to handle the constraints.

Several of the basic navigation mechanisms are reused in this scenario. But this scenario is more
complex and comprises more contingencies which have to be handled by the robot. The crucial part
of the scenario is implemented as part of this work. It is not completely finished and the final stress
testing has to be done. However, as the critical parts are solved and tested separately the composition
to form the whole scenario seems to be a feasible task.

6.3 Overview and Discussion of the Results

In this section the requirements depicted in section 4.1 are discussed how they are fulfilled in this
work. An overview can be found in table 6.1. The most relevant requirements are fulfilled. In the
following each of the requirements is discussed on its own.

] No. \ Requirement Relevance Status
L Hierarchical Tasks very high fulfilled
IL Reuse of Tasks very high fulfilled
III. Parallel Execution very high fulfilled
Iv. Managing Events very high fulfilled
V. Handling Contingencies high fulfilled
VL Plan Modification at Runtime medium fulfilled
VII. | Integration of Deliberative Tools medium fulfilled
VIII. | Integration of a Knowledge Base high fulfilled
IX. Information Exchange between Tasks | high fulfilled
X. Task Selection at Runtime very high fulfilled
XL Debugging the Task Expansion low not fulfilled

Table 6.1: Requirement fulfillment.

1. Hierarchical Tasks

Hierarchical tasks are completely supported. Tasks are organized in a parent/child relationship. The
children are managed within the plan clause of the parent TCB. In the reference implementation the
children are managed within a stack. Hierarchical tasks are widely used in the experiments. Mapping
the hierarchical constraints between the tasks directly to the way the tasks are stored, seems to be a
practical solution, instead of storing the tasks in a kind of task pool with annotated constraints as it is
done, for example, in RAP.
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II. Reuse of Tasks

The TCBs are reused in several different scenarios. Two of them are described in the experiments
section. These experiments also gain from the reuse of TCBs which where developed for other sce-
narios. The TCBs can almost be reused as a kind of black box. Currently, constraints indicating which
resources are used by a TCB are not expressed in the T7CB definition and are not evaluated during
execution. Integrating constraints will further improve reusability and robustness of the TCBs.

II1. Parallel Execution

Parallel execution of TCBs is supported in a quasi-parallel way. Two different modes parallel and
one-of are available. This completely covers the requirements placed on this thesis. Quasi-parallel
execution is seen as superior to true concurrency and will be a sustainable solution also for the future.

IV. Managing Events

Events are the basic mechanism how feedback is sent from the components to the sequencer. The
events can be activated and deleted by providing SMARTTCL specific functions. The life cycle and
the expansion of the task-net are based on events. The way events are integrated in SMARTTCL is
seen as reasonable solution.

V. Handling Contingencies

Contingency handling is supported by providing the concept of rules. The rules are used to react on
contingencies occurring at runtime. Similar mechanisms have already demonstrated their usefulness
in other approaches. In the experiments a large amount of different contingencies is handled success-
fully. The concept of rules provides a powerful mechanism to react on the dynamic and unpredictably
occurring changes in real world.

V1. Plan Modification at Runtime

Plan modification at runtime is supported by specific SMARTTCL functions. These functions are
typically used to react on events or to recover from a contingency by modifying the current plan. In
the experiments this mechanism is widely used. For example, plans generated by a symbolic planner
are integrated into the current plan by deleting the current plan and adding the generated sequence of
steps.

VIL. Integration of Deliberative Tools

Three different symbolic task planners are integrated and thus accessible by SMARTTCL as examples
of integrating deliberative tools. As symbolic planners typically only provide an output of the found
solution on the terminal, a feature to save the found solution into a specified file has been added?.
This is necessary to be able to import the generated plan into SMARTTCL and modify the current
plan. In the experiments two examples are given how symbolic planners are used at runtime. The first
one demonstrates how to generate the sequence in which the maps have to be passed to reach the goal
location. The latter one demonstrates how to generate the sequence which objects have to be stacked
into each other to cleanup the table while minimizing driving around with the robot. The current state

3 As the sources of all three symbolic planners are available this feature could easily be integrated.
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shows that different deliberative tool can be integrated and can be used to support the further task
expansion and decision making at runtime. The mechanism how to further integrate several other
tools is illustrated.

VIII. Integration of a Knowledge Base

The storage of the TCBs, rules and event-handlers is done in a KB. In the reference implementation the
SimpleKB is used. The experiments show that the KB is used, for example to store the knowledge about
the different rooms and the doors connecting them. Furthermore, the locations the robot memorizes
at runtime and can be asked to approach are stored in the KB. The SimpleKB implementation is quite
easy, but provides enough features to be useful for a huge amount of different scenarios. The SimpleKB
can easily be exchanged with KB systems which are more complex as, for example, PowerLoom [30].

IX. Information Exchange between Tasks

Information exchange between tasks is supported in two different ways. The TCBs provide input and
output variables. These variables can be used to pass information from one TCB to another one. This
mechanism is used to pass local information. Furthermore, information can be stored in and retrieved
from the KB. Thus, two different options covering different facilities are provided.

X. Task Selection at Runtime

Task selection at runtime is supported. The TCBs are stored in the KB and at runtime the signature
defined in the plan clause is matched against the signature of the TCBs stored in the KB. For the task
selection the name of the 7CB, the precondition, the matching of variables and the priority are taken
into account. The current state of the task selection already provides promising results. However,
for each TCB the evaluation of the precondition results either in true or false — no weighting of the
applicability is given. Thus the decision making is somehow still simple and can be extended to use,
for example, objective functions to rate how useful a TCB is in the current situations.

XI. Debugging the Task Expansion

Debugging the task execution is only supported in a very simple way. The steps which TCB is selected,
which rule and which event-handler is executed are only printed in the Lisp interpreter in a almost
unreadable way. The debugging functionality is strongly limited and is only useful for experienced
developers. In the current reference implementation debugging the task expansion is not satisfying
and has to be improved. This requirement is not satisfyingly fulfilled, but is also rated with minor
relevance for this work. The basic idea is available and can further be implemented to completely
fulfill the requirement.



Chapter 7

Summary and Future Work

7.1 Summary

As soon as service robots have to operate in the same environment as humans or even along with them,
they have to be able to handle the high dynamics of everyday environments. In reference to the best
available knowledge they have to perform the desired tasks in a robust way. Robustness is achieved
by integrating the use of symbolic and subsymbolic mechanisms of information processing.

Not only that the components and algorithms of such a system are of considerable complexity, the
dynamic management and online reconfiguration of the components further increase the complexity.
Various skills are composed at runtime to form behaviors adjusted to the current task, context and
perceived situation. The situation dependent composition and selection of skills is the only way to
execute tasks in dynamic environments. It is very unlikely that a single and mostly static approach
can handle all situations and contingencies experienced in real world operation. Thus, situation and
task dependent composition of behaviors is a powerful approach to robustly perform everyday tasks
in dynamic environments.

A utilization of the Three Layer Architecture to bridge the gap between symbolic and subsymbolic
mechanisms is developed and implemented. The major aspect of the utilization of the Three Layer
Architecture is the issue, that the sequencer is the driving part managing the overall system. The
sequencer is the place to store task dependent procedural knowledge on how to configure skills to
behaviors, when to use a symbolic task planner and what kind of action plot are suitable to achieve
certain goals. SMARTTCL is tailored to these requirements. Situation dependent task execution is
supported by task selection at runtime and online modification of plans. Contingencies are handled
by so-called rules which contain the steps how to recover from the failure.

The overall architecture and especially SMARTTCL has been successfully used to develop dif-
ferent scenarios. A reference implementation of SMARTTCL based on Lisp is implemented to gain
more experience and as proof of concept. Several experiments were performed. The basic idea how
the Three Layer Architecture is utilized in this work and details on the concepts behind SMARTTCL
are accepted for publication as paper with the title “SMARTTCL: An Execution Language for Con-
ditional Reactive Task Execution in a Three Layer Architecture for Service Robots.” [49] for the
International Workshop on DYnamic languages for RObotic and Sensors systems (DYROS), which
is affiliated with the 2nd International Conference on Simulation, Modeling, and Programming for
Autonomous Robots (SIMPAR).

This work provides an important contribution to sequencing in Three Layer Architectures. Similar
languages which were developed several years ago were not able to demonstrate the power of those
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concepts, although they already addressed aspects that are up-to-date nowadays. The progress in
robotics allows to proceed the development of those ideas. First experiments and scenarios performed
in this work already demonstrate the power and flexibility of that approach.

7.2 Future Work

This thesis provides the first steps towards a novel instantiation of the Three layer Architecture and the
definition of a task coordination language. It proved to be crucial to store procedural knowledge on
how to perform a task in a declarative way within the task nets. The basic mechanisms and concepts
provided by SMARTTCL build a promising starting point for further research in this area.

Further investigation on the task coordination language should focus on improving the task selec-
tion at runtime, composability of the TCBs, verification and validation of the SMARTTCL programs,
facilities for debugging the task expansion and decision making and finally the integration of several
other tools in the deliberative layer.

Task selection at runtime is currently done in a quit simple way. The precondition clause is only
designated to support binary decisions. The overall decision making can be improved. For example,
to use a utility function to rate the different 7CBs according to their expected utility in the current
situation.

Currently only preconditions are supported by SMARTTCL. The precondition is evaluated before
the execution of the task and not further be evaluated during execution automatically. To ensure
that a specific condition remains during execution, the components in the skill level have to provide
events which can be monitored by the sequencer. Further capabilities for monitoring the system and
integrating that into the overall architecture is another interessting topic to work on.

In the current reference implementation new behaviors can be composed out of existing ones.
However, knowledge about constraints and some other aspects is still necessary to be known by the
behavior developer. For example, two TCBs operating with the robots manipulator should never run
at the same time. To be aware of the constraints these have to be annotated to the TCBs and checked
at runtime. Another problem occurred, for example, whether two TCBs are executed in parallel where
both change the currently activated grammar specification of the speech recognition component. The
desired behavior would be, that both specifications are merged. But such a behavior is not supported
and the specification send as last is active and overwrites the other one.

In the current state no verification of the SMARTTCL programs is supported. For example, the
rules and event-handler are assigned to the TCBs and events by their string identifier. Typing er-
rors can lead to runtime failures that could be avoided by checking whether the specified rules and
event-handlers are also specified as blocks in the KB. Verification and analysis can, for example, be
performed by defining SMARTTCL in a textual modeling level. Having the behavior programs in
such a representation, verification tools can be used to ensure, for example, that the mapping of the
string identifiers are correct. Further analysis can be performed based on the model representation.
One possible solution to implement such a representation can be to use x7ext [55], which is part of the
Eclipse Modeling Project.

The proposed concept of SMARTTCL allows to easily integrate state chart, for example, generated
by Visual State. In that situation a TCL node is represented by a state, which can contain hierarchies
and parallel regions. State charts can be used to model static assured behaviors for situations where no
variability in the task execution is wanted. In safety critical situations the overall execution control can
be given to the state chart by preventing parallel TCBs from execution. This integration in supported
thanks to the very similar underlying mechanisms how events are handled. The integration of this two
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mechanisms has further to be investigated on. Especially, how the events are mapped between the
different representations.

Debugging the task decomposition and decision making at runtime is currently only supported
in a very rudimentary way. A graphical representation, for example, based on Graphviz [18] will be
very useful. Further execution traces illustrating why which decision was taken will be mandatory to
efficiently develop complex scenarios. Especially for behavior developers which are not familiar with
the details of SMARTTCL the currently available status messages do not provide enough support.

In this work three different symbolic task planners are integrated as example of tools in the delib-
erative layer. Further tools to support the decision making at runtime have to be added. This includes,
for example, simulators and analysis tools. As an example of a simulator, Gazebo [17] can be used
to obtain the maximum allowed velocities taking the current payload of the robot into account. Fur-
thermore, analysis tools can be used to check at runtime whether the desired configuration of the
components in the skill layer is feasible, before setting the configuration.
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Appendix A

Sources Guiding Tour

This appendix completely illustrates the source files of the guiding tour scenario. The TCBs, rules and
event-handlers are defined in the scenario.lisp file. The file symbolicPlannerImport—
Export .1lisp contains the Lisp function to export the PDDL model from the KB specific to the map
switching task. It also contains the import function to add the generated sequence into the current plan
clause. Depending on the environment the scenario can be performed in different KB setups. The first
setup (memory-kate.lisp) is used on the real robot “Kate”. The setup is performed in one room
(robot-lab C26). The second setup (memory-stage.lisp) is performed in the stage simulator. In
that setup seven different rooms exist which are represented in the KB.
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