
autonome mobile Serviceroboter
servicerobotik

Zentrum für angewandte Forschung
an Fachhochschulen

Report 2010 / 01

ACE/SmartSoft
Technical Details and Internals

Christian Schlegel
Alex Lotz

Christian Schlegel				 Alex Lotz
Hochschule Ulm					 Hochschule Ulm
Prittwitzstrasse 10				 Prittwitzstrasse 10
89075 Ulm, Deutschland			 89075 Ulm, Deutschland

schlegel@hs-ulm.de				 lotz@hs-ulm.de
http://www.hs-ulm.de/schlegel		

Copyright © Schlegel, Lotz

29. November 2010

ACE/SmartSoft

Technical Details and Internals

Christian Schlegel

Alex Lotz

ii

Contents

1 Naming Service 1

1.1 Introduction and Overview . 1

1.1.1 The ACE Naming Service . 2

1.1.2 The ACE-Patch . 3

1.1.3 The ACE/SmartSoft Naming Service 7

1.1.4 Details of the Naming Service Classes 11

1.2 Naming Service Daemon . 12

1.2.1 Overview on the Overall Structure . 12

1.2.2 Naming Service Data Structures . 13

1.2.3 The Configuration File . 13

1.2.4 Features and Characteristics . 14

1.3 Naming Service inside a Component . 15

1.3.1 Overview on the Overall Structure . 15

1.3.2 Communication Patterns: Service Requestor 17

1.3.3 Communication Patterns: Service Provider 18

1.3.4 The Configuration File of a Component 19

2 Mapping of the Communication Patterns 21

2.1 Service Requestors . 23

2.1.1 Connect . 23

2.1.2 Disconnect . 25

2.2 Service Providers . 27

2.2.1 Creation of a Service Provider . 27

2.2.2 Destruction of a Service Provider . 29

2.3 Further Details on the Transportation of Data 29

2.3.1 Memory Management and Communication Objects 29

2.3.2 ServiceHandler and Callbacks . 32

2.3.3 Overview of all Messages in SmartSoft 34

2.4 Further Details explained with the PushNewest pattern 36

iii

iv CONTENTS

2.4.1 Class Diagram . 36
2.4.2 File structure . 38

3 The SmartSoft Kernel 41

3.1 The Number of Threads inside a Component 41
3.1.1 The minimum number of Threads . 41
3.1.2 Option A . 43
3.1.3 Option B . 44

3.2 SmartComponent . 45
3.2.1 SmartComponent Initialization . 45
3.2.2 Shutdown Procedure of SmartComponent 47
3.2.3 Administrative Monitor in SmartComponent 49

3.3 ManagedTasks . 50

4 The User View 53

4.1 The Administrator View . 53
4.2 The Robotics User View . 54

Chapter 1

Naming Service

1.1 Introduction and Overview

Communication patterns provide a link between a service requestor and a service provider.
Although they can even be used to implement interfaces inside a component, both parts are
normally located not only in different components, but the components are also distributed
over different hosts. One therefore needs a scheme to locate and to address a specific service
within a specific component.

The overall approach is shown in figure 1.1 and is described in detail in [2, section 5.4.5].
Each component has a unique name. Services provided by a component are denoted by names
that are unique within a component. Service requestors do not have public names since they
need not to be found from outside (they connect to service providers and are not contacted).
Service requestors can become named ports by registering themselves at the wiring service
(see [2, section 5.5.2.6]) of their component. As named ports, service requestors can be wired
with service providers from outside the component. Port names also have to be unique within
a component.

Services can now clearly be identified by a tuple {component, service}. A service requestor
only needs to know this tuple to connect to a service provider. The wiring pattern is now
based on fourtuples {A:component, B:port, C:component, D:service} to connect the service
requestor port B of component A with the service provider D of component C. Of course, the
framework establishes connections only to services compatible with the service requestor.

It now depends on the mapping of the SmartSoft communication patterns onto the
underlying middleware how the above names of service providers used to establish connections
between service requestors and service providers are being resolved. For example, the CORBA
based implementation of SmartSoft relies on the CORBA naming service. In contrast, the
ACE based implementation needs to provide its own naming service that relates the symbolic
names for services to the addressing mechanism used inside ACE/SmartSoft.

The naming service of ACE/SmartSoft consists of two different parts. The first part

1

2 CHAPTER 1. NAMING SERVICE

Figure 1.1: Naming of component and service

represents the naming service itself and is implemented as daemon. The daemon has to
run in order to allow service requestors of components to resolve symbolic names of service
providers they want to connect to. The second part is located inside components and provides
the communication to the naming service daemon as required by the components. It provides
a client access to the naming service daemon for a component.

After describing the basic structure of the ACE/SmartSoft naming service and how it
is implemented on top of the classes provided by ACE, we first describe the details of the
naming service daemon and then the details of the component internal part that handles the
communication with the naming service daemon.

1.1.1 The ACE Naming Service

The ACE toolkit provides a set of core classes to implement a naming service [1, Chapter
21]. It comprises a persistent key/value mapping mechanism, which can, for instance, create a
server-to-address mapping much like DNS but tailored to application’s needs. The name space
can cover a single process, all processes on a single node, or many processes on a network.

The main classes are1

1for reference, see README in ACE_ROOT/netsvcs/lib

1.1. INTRODUCTION AND OVERVIEW 3

• Naming_Context

This class is the main workhorse of the Naming Service. A naming context instance is
typically used to

– bind or rebind a key to a value in the naming context,

– unbind, or remove, an entry from the context,

– resolve, or find, an entry based on a key,

– fetch a list of names, values, or types from the context,

– fetch a list of name/value/type bindings from the context.

The naming context has two different modes of handling key/value mappings. The
first one is to forward all actions to a remote name space (Remote_Name_Space). An
internal ACE protocol behind the Name_Proxy interacts with the remote name space.
The remote name space accepts that protocol via its Name_Acceptor. The second one
is to process all actions on the local name space. The related key/value mappings are
stored in a local file.

• Name_Acceptor

The Name_Acceptor accepts connections from remote naming contexts and creates an
instance of Name_Handler for each connection.

• Name_Handler

All requests from the remote naming contexts are handled in the handle_input method
of the Name_Handler. The requests are interpreted and are forwarded to the local
namespace.

1.1.2 The ACE-Patch

The Problem

Releases of ACE up to the current stable release ACE 5.8.0 have an interoperability problem
across platforms:

• a naming context accesses a remote name space via an ACE internal protocol. The
problem is that the used data structure in the Name_Request is not marshalled using
the regular ACE CDR Stream (which in fact are compatible across different platforms).

• Rather, for efficiency reasons, a lightweight marshalling is implemented in the encode

and decode methods of Name_Request. A name/value/type set is just memcopied by
the Name_Proxy. The getter/setter methods of Name_Request just use their local size of
basic data types (int times ACE_WCHAR_T) for pointer arithmetic to calculate the start
address of the name, the value and the type string in the local stream buffer.

4 CHAPTER 1. NAMING SERVICE

• Both, the int and the ACE_WCHAR_T datatypes are of different size on different platforms
(for example, size of ACE_WCHAR_T is 4 bytes on Linux and 2 bytes on Windows).

The Solution

The interoperability problem is solved by introducing a new class Interop_Name_Request.
This class replaces Name_Request, has the exactly same interface and internal structure.
The difference is that ACE_WCHAR_T is replaced by ACE_TCHAR. The latter is independent of
operating system, byte order and 32/64 bit architecture. As result, the lightweight marshalling
based on memcopies can be kept but now is platform independent.

The Name_Proxy normally uses the Name_Request which now is replaced by Interop-

_Name_Request. Thus, the data structure used within the ACE internal protocol for accessing
remote name spaces is replaced by one that does not anymore show the above flaws. That
replacement is achieved without degradation in efficiency and with only a minor modification
that has no further effects on the ACE library.

The Implementation of Interop_Name_Request

The class Name_Request is defined in Name_Request_Reply.h shown in listing 1.1. The
internally used buffer is defined in line 35 and depends on the platform specific representation
of ACE_WCHAR_T.

1 // = The 5 f i e l d s in the <Transfer> s t r u c t are t ransmi t t ed to the s e r v e r .

2 // The remaining 2 f i e l d s are not t r an s f e r r e d −− they are used only on

3 // the server−s i d e to s imp l i f y l ookups .

4

5 struct Trans fe r

6 {
7 /// Length o f e n t i r e r e que s t .

8 ACE UINT32 l eng th ;

9

10 /// Type o f the r e que s t (i . e . , <BIND>, <REBIND>, <RESOLVE>, and <UNBIND>) .

11 ACE UINT32 msg type ;

12

13 /// Ind i c a t e s i f we shou ld b l o c k f o r e v e r . I f 0 , then <secTimeout >

14 /// and <usecTimeout > i n d i c a t e s how long we shou ld wai t .

15 ACE UINT32 b l o c k f o r e v e r ;

16

17 /// Max seconds w i l l i n g to wai t f o r name i f not b l o c k i n g f o r e v e r .

18 ACE UINT64 sec t imeout ;

19

20 /// Max micro seconds to wai t f o r name i f not b l o c k i n g f o r e v e r .

21 ACE UINT32 usec t imeout ;

22

23 /// Len o f name in by t e s

1.1. INTRODUCTION AND OVERVIEW 5

24 ACE UINT32 name len ;

25

26 /// Len o f va lue in by t e s

27 ACE UINT32 va l u e l e n ;

28

29 /// Len o f type in by t e s

30 ACE UINT32 type l en ;

31

32 /// The data por t i on conta ins the <name >

33 /// f o l l owed by the <va lue >

34 /// f o l l owed by the <type >.

35 ACE WCHAR T data [MAX NAME LENGTH + MAXPATHLEN + MAXPATHLEN + 2] ;

36 } ;

Listing 1.1: Name Request Reply.h

The class Interop_Name_Request shown in listing 1.2 is defined in Interop_Name_Req-

uest.h. As shown in line 36, the internally used buffer is now based on ACE_TCHAR. The
following modifications have been made with the premise of avoiding any changes at the
interface of Name_Request to ensure full replaceability:

• lines 18/19 in listing 1.2:
the ACE_UINT64 data type suffers from byte order problems that are not fully covered
by the byte swapping mechanism inside the encode / decode methods. Thus, it has
been replaced by an array of ACE_TCHAR.

• the byte swapping mechanism in encode and decode is not any longer needed when
using ACE_TCHAR and is thus removed.

• another copy-constructor allows to copy a Name_Request onto a Interop_Name_Request

and thereby handles the conversion of the internal data structure. This allows to seam-
lessly forward Name_Request objects to the new format.

• the constructor for creating an ACE_Name_Request message has the same interface as
before (taking the same arguments without modifications of their data types). However,
it now does the conversion onto the new internal data structure.

1 // = The 5 f i e l d s in the <Transfer> s t r u c t are t ransmi t t ed to the s e r v e r .

2 // The remaining 2 f i e l d s are not t r an s f e r r e d −− they are used only on

3 // the server−s i d e to s imp l i f y l ookups .

4

5 struct Trans fe r

6 {
7 /// Length o f e n t i r e r e que s t .

8 ACE UINT32 l eng th ;

6 CHAPTER 1. NAMING SERVICE

9

10 /// Type o f the r e que s t (i . e . , <BIND>, <REBIND>, <RESOLVE>, and <UNBIND>) .

11 ACE UINT32 msg type ;

12

13 /// Ind i c a t e s i f we shou ld b l o c k f o r e v e r . I f 0 , then <secTimeout >

14 /// and <usecTimeout > i n d i c a t e s how long we shou ld wai t .

15 ACE UINT32 b l o c k f o r e v e r ;

16

17 /// Max seconds w i l l i n g to wai t f o r name i f not b l o c k i n g f o r e v e r .

18 // ACE UINT64 sec t imeou t ;

19 ACE TCHAR sec t imeout [8] ;

20

21 /// Max micro seconds to wai t f o r name i f not b l o c k i n g f o r e v e r .

22 ACE UINT32 usec t imeout ;

23

24 /// Len o f name in by t e s

25 ACE UINT32 name len ;

26

27 /// Len o f va lue in by t e s

28 ACE UINT32 va l u e l e n ;

29

30 /// Len o f type in by t e s

31 ACE UINT32 type l en ;

32

33 /// The data por t i on conta ins the <name >

34 /// f o l l owed by the <va lue >

35 /// f o l l owed by the <type >.

36 ACE TCHAR data [MAX NAME LENGTH + MAXPATHLEN + MAXPATHLEN + 2] ;

37 } ;

Listing 1.2: Interop Name Request.h

Modification of the Name_Proxy

The definition of the class Name_Proxy is unmodified, only the implementation of the following
methods of Name_Proxy has been changed slightly. Instead of Name_Request, we now use
Interop_Name_Request. Figure 1.2 shows further details of send_request and recv_reply.

• int send_request (ACE_Name_Request &request);

– in the original implementation, encode of Name_Request is called.

– in the modified implementation, encode of Interop_Name_Request is called. Be-
fore calling encode, the parameter request of type Name_Request is converted into
type Interop_Name_Request. The constructor of Interop_Name_Request accepts
request as parameter.

1.1. INTRODUCTION AND OVERVIEW 7

• int recv_reply (ACE_Name_Request &reply);

– in the original implementation, a received stream is directly stored in the reply

parameter.

– in the modified implementation, the received stream is put into a local object of
type Interop_Name_Request. The Interop_Name_Request provides the method
convert_to to convert the data structures into the expected type Name_Request

of the reply argument.

• int request_reply (ACE_Name_Request &request);

– this method is a combination of the above both methods. Since this method does
not just call the above methods and instead reimplement this functionality, the
above modifications are repeated here.

– the ACE/SmartSoft naming service described in the next section requires access
to the true TCP address of the socket underlying the Name_Proxy. The details are
explained in the next section. A special mode of operation in this method is
therefore introduced:

∗ The Name_Request consists of name, value and type. Setting the type string
to the value smartip, the request_reply method adds the IP address as
colon-separated prefix to the value.

1.1.3 The ACE/SmartSoft Naming Service

The different libraries implementing the ACE/SmartSoft Naming Service are shown in
figure 1.3. The ACE core library of the ACE software package shown on the left provides
the core functionality to use the ACE naming service for customized applications. All our
extensions to the core library are summarized as ACE patch. This patch is independent
from SmartSoft and improves the ACE package with respect to cross-platform usage of its
naming service core functionality.

The NS-lib library shown on the lower right comprises all functionality required to imple-
ment the naming service daemon of ACE/SmartSoft. The naming service daemon in its
current implementation is a centralized service for all components. It provides a directory of
available services and resolves names of required services [2, section 5.4.5].

The SmartSoft library shown on the upper right comprises all functionality required by
the components of ACE/SmartSoft. Service providers and service requestors of compo-
nents interact with the naming service to either announce their provided services or to resolve
required services. The SmartNamingHelper provides access to that functionality of the Nam-

ing_Context needed in SmartSoft. It thereby parametrizes the generic Naming_Context for

8 CHAPTER 1. NAMING SERVICE

Figure 1.2: Interaction of Name_Proxy with Interop_Name_Request.

the requirements of SmartSoft. For example, the Naming_Context is configured to use a
Remote_Name_Space instead of a local one.

The addressing scheme of SmartSoft is explained in detail in [2, section 5.6.6.4]. Service
providers register themselves at the name service via a registration mechanism (register).
Service requestors ask the name service to resolve service provider names (query). Since
ACE/SmartSoft uses the message middleware patterns of ACE, the addressing scheme
illustrated in [2, figure 5.87] is the one to be implemented here.

Name/Value entries of the Naming Service

The Naming_Context stores name/value/type triples. In ACE/SmartSoft, the name part
in [2, figure 5.87] is stored in the name key, the address part in the value entry. Details are
summarized in table 1.1.

SmartSoft requires a globally unique service identifier [2, page 166]. This can be com-
posed out of the TCP socket address and a host-wide unique identifier. ACE/SmartSoft

uses the ACE-class UUID_Generator to generate a host-wide unique identifier. This class im-

1.1. INTRODUCTION AND OVERVIEW 9

Figure 1.3: Overall structure of the SmartSoft Naming Service based on ACE.

name <component name>
<pattern type> (i.e PushNewest, Send, . . .)
<service name>
<communication object name><...> (up to three are possible)
all entries are of type ACE TString (compatible to std::string)

value <TCP socket address> (IP address + port number)
<service identifier> (UUID)
all entries are of type ACE TString (compatible to std::string)

Table 1.1: The format of the name/value entry is exactly the same as specified in [2].

plements the specification of the INTERNET-DRAFT for UUIDs (Universally Unique Iden-
tifier) and GUIDs (Globally Unique Identifier).

Registration at the Naming Service

The registration is performed via the smart_rebind method of the SmartNamingHelper. It
calls the rebind method of the Naming_Context. The rebind method overwrites values in
case of existing names and otherwise creates a new name/value entry. We use a rebind

instead of a bind due to the following scenario:

• in case a component crashes, its service providers might not correctly unbind or remove
an entry from the naming context. As result, a no longer used name/value entry is still
stored in the naming service.

• restarting this component results in registrations of its service providers. Since their
name keys are still available in the naming service, one just has to overwrite their value
entries. In case of using a bind, one would have first to clean up the naming service
from outdated entries. Thus, using a rebind is a matter of comfort at the level of the
internal implementation.

10 CHAPTER 1. NAMING SERVICE

Outdated entries in the naming service can result in three different scenarios:

• Scenario 1:
The name/value entries of service providers of a component are still listed in the naming
service while the component already crashed and thus the services are not available
anymore.

Service requestors get the value entry and thus try to connect the TCP socket address
of the service provider. The SmartSoft communication patterns detect that there is
no end point available and handle that accordingly. Thus, dangling entries do not cause
any problems in this scenario.

• Scenario 2:
Same as scenario 1, but another and different service provider meanwhile caught the
above TCP socket address. In this case, the naming service answers the request of
a service requestor with the outdated value entry that now points to a completely
different (and in many cases even incompatible) service provider. However, each connect
of a service requestor transmits the globally unique service identifier – received from
the naming service – to the service provider. The service provider detects that its
service identifier and the one of the connect do not match. Thus, the connection request
is rejected. Again, an outdated entry in the naming service cannot result in wrong
connects.

• Scenario 3:
Same as scenario 2, but the very same component has been restarted after a shutdown
(or even after a breakdown without cleaning up the entries in the naming service). Since
a restarted service provider might be in a different state than the previous instance of
the service provider, SmartSoft expects that the replacement of the service provider
is detectable.

In case of ACE/SmartSoft, a loss of connection is detected by the used underlying
ACE socket mechanisms. Detection is ensured by the used parametrization of the
ACE mechanisms. Therefore, a disappearing service provider always enforces service
requestors to reconnect which avoids wrong assumptions at the client side on states of
service providers.

Even in case the service provider under consideration happened to get its previous
TCP socket address, the new service provider instance definitely possesses a different
globally unique service identifier (in this example composed out of the same TCP socket
address but a different service identifier). The enforced reconnect transmits the globally
unique service identifier as received from the naming service. It only succeeds if the
transmitted globally unique service identifier matches the one of the reached service

1.1. INTRODUCTION AND OVERVIEW 11

provider. Thus, independently of transient inconsistencies in the naming service, neither
a service provider can seamlessly be replaced by another instance nor can incompatible
services connect to each other.

Querying the Naming Service

The querying is performed via the resolve method of the SmartNamingHelper. This method
is simply a wrapper around the resolve method of the Naming_Context. In case the name
key exists in the naming service, the resolve method of Naming_Context returns the value
of the corresponding name/value entry. However, the value is of type ACE_NS_WString which
is a wide character string. Because SmartSoft uses ASCII strings internally, the value is
converted inside of the resolve method of SmartNamingHelper into a ACE_TString which is
compatible to the std::string (resp. ASCII string representation).

If a name key does not exist in the naming service, the resolve method of the Smart-

NamingHelper returns a corresponding error value (as described in Doxygen for this class).
The resolve method is the first step in the connection procedure of a service requestor.

As described in the previous subsection, the value of a name/value entry in the naming service
consists of a TCP socket address and a service identifier. The second step in the connection
procedure is to create a socket connection to the service provider using the received TCP
socket address. The last step is to transfer the service identifier to the service provider, which
in turn compares it with its local (current) service identifier and in case of a match accepts
or otherwise rejects the connection. In case a service provider accepts the connection, a
success message is replied back to the service requestor, which then changes to the connected
state. Otherwise a connection breaks up with a corresponding status code and the service
requestor is in the disconnected state. That procedure is entirely the one described in [2,
section 5.6.6.10].

As described in the previous subsection, a connection is only successful if a service provider
and the service requestor are of the same type and the service identifier from the naming
service is the same as in the service provider. All other cases – where for example the service
identifier in the naming service is outdated – are handled correctly and lead to a consistent
disconnected state.

1.1.4 Details of the Naming Service Classes

Figure 1.4 gives an overview of all classes which are used in the naming service on both sides,
the naming service requestor and the naming service provider side. The class SmartNam-

ingHelper (on the upper left) is implemented inside of the ACE/SmartSoft library and
represents the naming service requestor.

The two classes, Interop_Name_Request and ACE_Name_Proxy are omplemented in the
ACE patch, which is provided together with the ACE/SmartSoft library.

12 CHAPTER 1. NAMING SERVICE

Finally, the two classes, ACE_Name_Acceptor and ACE_Name_Handler are implemented in
the naming service daemon.

The interactions between all these classes is as follows. A call of one of the methods (like
rebind) from the SmartNamingHelper (see table 1.2) internally rusults in a corresponding call
of a method from the ACE_Naming_Context (as shown in the table). ACE_Naming_Context is
initialized in this case to use the ACE_Remote_Name_Space, which result in a corresponding
method calls in the ACE_Name_Proxy (see table).

The ACE_Name_Proxy in turn communicates with the ACE_Name_Handler class from the
naming service daemon. The ACE_Name_Handler receives requests in its handle_input me-
thod from the remote ACE_Name_Proxy and dispatches the request to one of its internal
methods (like resolve, rebind, etc.). These local methods are implemented to use a database
(which is stored in a local file) to process the requests. The results from these requests are
replied back to the ACE_Name_Proxy, then to the ACE_Naming_Context and finally to the
SmartNamingHelper in ACE/SmartSoft.

Method in SmartNamingHelper Method in Naming Context Method in Name Proxy
smart rebind rebind request reply
unbind unbind request reply
resolve resolve send request + recv reply

Table 1.2: Overview of the methods called in the Naming_Context configured with Re-
mote_Name_Space

1.2 Naming Service Daemon

The naming service daemon provides a centralised directory service, which is used by com-
ponents in ACE/SmartSoft to reqister their services and to query for service adresses
respectivelly.

1.2.1 Overview on the Overall Structure

As introduced in section 1.1.4, the implementation of the naming service daemon is based on
the two classes, the ACE_Name_Acceptor and ACE_Name_Handler. The overall structure of the
naming service daemon uses the Service Configurator Framework of ACE (as desribed in [1,
chapter 5]). As defined there, a dynamic service must be implemented as a shared library (so
lib on Linux or DLL lib on Windows). This library is provided with the ACE/SmartSoft

package inside of the Utilities folder in the NS-Lib project. This library is used in a separate
programm to start the naming service as a daemon. This program is also provided with the
ACE/SmartSoft package in the Utilities folder in the NS-Daemon project.

1.2. NAMING SERVICE DAEMON 13

SmartNamingHelper

- useNamespace : bool

mutex : ACE_Recursive_Thread_Mutex

addrToStr(in addr : ACE_INET_Addr, inout string : ACE_TString) : int

strToAddr(in string : ACE_TString, inout addr : ACE_INET_Addr) : int

addrToPortstr(in addr : ACE_INET_Addr, inout value : ACE_TString) : int

portStrToAddr(in value : ACE_TString, inout addr : ACE_INET_Addr) : int

+ SmartNamingHelper(in withRemoteNamespace : bool = false)

+ ~SmartNamingHelper()

+ set_use_namespace(in withRemoteNamespace : bool) : void

+ close_naming_context(in : void) : void

+ bind(in name : ACE_TString, in value : ACE_TString) : int

+ rebind(in name : ACE_TString, in value : ACE_TString) : int

+ smart_rebind(in name : ACE_TString, in value : ACE_TString) : int

+ resolve(in name : ACE_TString, inout value : ACE_TString) : int

+ unbind(in name : ACE_TString) : int

+ smart_unbind(in component_name : char) : int

+ createNamingServiceKey(in component : ACE_TString, in pattern : ACE_TString, in service : ACE_TStri...

+ createNamingServiceValue(inout value : ACE_TString, in addr : ACE_INET_Addr, in uuid : ACE_Utils::U...

+ createNamingServiceSmartValue(inout value : ACE_TString, in addr : ACE_INET_Addr, in uuid : ACE_Uti...

+ parseNamingServiceValue(in value : ACE_TString, inout addr : ACE_INET_Addr, inout uuid : ACE_Utils:...

+ getAddressForListening(inout addr : ACE_INET_Addr) : int

+ search_config_file(in argc : int, inout argv : char) : int

+ search_initialized_service(in service_name : ACE_TString = "ACE_Naming_Context") : int

Interop_Name_Request

- name_ : ACE_TCHAR

- value_ : ACE_TCHAR

- type_ : char

+ Interop_Name_Request(in : void)

+ Interop_Name_Request(in request : ACE_Name_Request)

+ Interop_Name_Request(in msg_type : ACE_INT32, in wname : ACE_WCHAR_T, in name_length : ACE_UINT32, ...

+ Interop_Name_Request(in msg_type : ACE_INT32, in name : ACE_TCHAR, in name_length : ACE_UINT32, in ...

+ ~Interop_Name_Request(in : void)

+ convert_to(inout request : ACE_Name_Request) : int

+ init(in : void) : void

+ length(in : void) : ACE_UINT32

+ length(in : ACE_UINT32) : void

+ msg_type(in : void) : ACE_INT32

+ msg_type(in : ACE_INT32) : void

+ block_forever(in : void) : ACE_UINT32

+ block_forever(in : ACE_UINT32) : void

+ timeout(in : void) : ACE_Time_Value

+ timeout(in timeout : ACE_Time_Value) : void

+ name(in : void) : ACE_TCHAR

+ name(in : ACE_TCHAR) : void

+ value(in : void) : ACE_TCHAR

+ value(in : ACE_TCHAR) : void

+ type(in : void) : char

+ type(in : char) : void

+ name_len(in : void) : ACE_UINT32

+ name_len(in : ACE_UINT32) : void

+ value_len(in : void) : ACE_UINT32

+ value_len(in : ACE_UINT32) : void

+ type_len(in : void) : ACE_UINT32

+ type_len(in : ACE_UINT32) : void

+ encode(inout : void) : int

+ decode(in : void) : int

+ dump(in : void) : void

- get_secs() : ACE_UINT64

- set_secs(in secs : ACE_UINT64) : void

ACE_Name_Proxy

- connector_ : ACE_SOCK_Connector

- peer_ : ACE_SOCK_Stream

- reactor_ : ACE_Reactor

+ ACE_Name_Proxy(in : void)

+ ACE_Name_Proxy(in remote_addr : ACE_INET_Addr, inout options : ACE_Synch_Options = ACE_Synch_Option...

+ open(in remote_addr : ACE_INET_Addr, inout options : ACE_Synch_Options = ACE_Synch_Options::default...

+ request_reply(inout request : ACE_Name_Request) : int

+ send_request(inout request : ACE_Name_Request) : int

+ recv_reply(inout reply : ACE_Name_Request) : int

+ get_handle(in : void) : ACE_HANDLE

+ ~ACE_Name_Proxy(in : void)

+ dump(in : void) : void

- ACE_Name_Proxy(in : ACE_Name_Proxy)

- operator =(in : ACE_Name_Proxy) : ACE_Name_Proxy

ACE_Name_Handler

- name_request_ : ACE_Name_Request

- name_request_back_ : ACE_Name_Request

- name_reply_ : ACE_Name_Reply

- addr_ : ACE_INET_Addr

- naming_context_ : ACE_Naming_Context

+ ACE_Name_Handler(inout : ACE_Thread_Manager = 0)

+ open(inout : void = 0) : int

abandon(in : void) : int

recv_request(in : void) : int

dispatch(in : void) : int

send_reply(in status : ACE_INT32, in errnum : ACE_UINT32 = 0) : int

send_request(inout : ACE_Name_Request) : int

get_handle(in : void) : ACE_HANDLE

handle_input(in : ACE_HANDLE) : int

handle_timeout(in tv : ACE_Time_Value, in arg : void) : int

~ACE_Name_Handler(in : void)

- naming_context(in : void) : ACE_Naming_Context

- bind(in : void) : int

- rebind(in : void) : int

- shared_bind(in rebind : int) : int

- resolve(in : void) : int

- unbind(in : void) : int

- lists(in : void) : int

- lists_entries(in : void) : int

- name_request(inout one_name : ACE_NS_WString) : ACE_Name_Request

- value_request(inout one_name : ACE_NS_WString) : ACE_Name_Request

- type_request(inout one_name : ACE_NS_WString) : ACE_Name_Request

ACE_Name_Acceptor

- naming_context_ : ACE_Naming_Context

+ init(in argc : int, inout argv : ACE_TCHAR) : int

+ parse_args(in argc : int, inout argv : ACE_TCHAR) : int

+ naming_context(in : void) : ACE_Naming_Context

<<ACE_Schedule_All_Reactive_Strategy>>

scheduling_strategy_

Figure 1.4: Class diagram of the SmartSoft Naming Service.

To start the naming service daemon, a configuration file is needed which is described
in section 1.2.3 below. At the start procedure of the naming service daemon, first, the
configuratino file is parsed. Second, the naming service library is loaded and is started as a
service with the parameters from the configuration file.

Inside of the service the ACE_Name_Acceptor is initialised such, that new connectinos
from naming service requestors can be accepted. For each accepted connection, the a new
instance of a ACE_Name_Handler is created by the ACE_Name_Acceptor. This new instance
then processes requests from its internal communication channel.

1.2.2 Naming Service Data Structures

The naming service daemon internally stores name/value/type tripples ina local database,
which is stored in a local file and is thus persistent. For each service provider in ACE/S-

martSoft, a tripple is stored in the database containing the name and the address of this
service (as defined in table 1.1).

1.2.3 The Configuration File

The configuration file (shown in listing 1.3) presents an example for a typical configuration of
a naming service daemon. As shown there the configuration is build-on two parts. The first
part (shown in line 29 of listing 1.3) represents the instruction for the Service Configurator

14 CHAPTER 1. NAMING SERVICE

Framework in ACE, for how to start the shared library. This line is not intended to by
modified by component developers (framework users). The second part (shown in line 29
of listing 1.3) defines the parameter string. This string is used to customize the naming
service daemon. For example the port number of the TCP socket address from the internal
ACE_Name_Acceptor can be parametriezed without recompiling the application. Additionally,
the directory and the name of the database file can be configured. Therefore, this string is
intended to be modified by componet developers.

1 # These are the s e r v i c e s t ha t can be l i n k e d in t o ACE.

2 # Note t ha t you can append the ”ne t s v c s ” wi th

3 # a r e l a t i v e path i f you didn ’ t s e t your LD search path c o r r e c t l y −−
4

5 # ACE w i l l l o c a t e t h i s f o r you au t oma t i c a l l y by read ing your LD search

6 # path . Moreover , ACE w i l l au t oma t i c a l l y i n s e r t the co r r e c t s u f f i x

7 # (e . g . , ”. d l l ” , ”. so ” , e t c .) . In add i t ion , you can rep l a c e the

8 # hard coded ”−p 20 xxx ” wi th ”−p $PORTxxx” i f you s e t your environment

9 # va r i a b l e s c o r r e c t l y .

10

11 # Fol lowing con f i g u ra t i on assignment can be read as f o l l o w s :

12 #1) dynamic : means the s e r v i c e w i l l be s t a r t e d and con f i gured dynamica l l y

13 (with t h i s s c r i p t)

14 #2) Name Server : i s the c l a s s name used in the implementat ion

15 (t h i s should not be modi f i ed)

16 #3) Serv i c eOb j e c t ∗ : t he type o f Name Server , i t s a Serv i c eOb j e c t o f course

17 #4) NS−Lib : t h i s i s the l i b r a r y (DLL or so) f i l e used f o r s e r v i c e i n i t .

18 # modify t h i s Name, i f l ibname changes .

19 #5) make ACE Name Acceptor () : i s the cons t ruc t o r used to i n i t i a l i z e Serv i c e

20 # p l ea s e do not modify t h i s , o the rw i se Serv i c e wont work prope r l y

21 #6) Parameter s t r i n g passed to Serv i c e : t h e s e are the main con f i g u ra t i on

22 # opt ions to be modi f ied :

23 #6.1) F i r s t parameter i s the program ’ s name (i t i s i gnored in the s e r v i c e)

24 #6.2) −p : here i s the port−number f o r the s e r v i c e to l i s t e n on

25 # p l ea s e modify t h i s parameter on your needs

26 #6.3) − l : Fo lder Path , where Name−Database f i l e shou ld be s tored ,

27 # t h i s parameter i s to be modi f ied on your needs

28 #6.4) −s : Name fo r Name−Database f i l e (modify on your needs)

29 dynamic Name Server Se rv i c e Ob j e c t ∗ NS−Lib : make ACE Name Acceptor ()

30 ”main −p 8080 − l . / −s MYNAMES”

Listing 1.3: Configuration file for Naming Service

1.2.4 Features and Characteristics

The implementation of the naming service daemon provides some error handling strategies
during the initialisation of its service. For example at startup of the daemon, it is checked,
whether the configuration file can be found either in the default search location (which is the

1.3. NAMING SERVICE INSIDE A COMPONENT 15

local directory, where the daemon is started), or the directory which is passed as parameter
−f during the startup of the daemon. If this file could not been found, or is not accessible (for
example due to missing read flag on Linux), the naming service daemon prints a corresponding
message on the console and abborts the start up procedure. The same occur if the shared
library of the naming service is not accessible. Again, an error message is printed on the
console and the start up procedure is abborted.

If the naming service daemon was able to initialize its internal service with the parameters
from the configuration file, it prints a corresponding success message on the console.

At runtime the naming service daemon can handle different error situations. For exam-
ple a broken connection to one (or some) of the components (i.e. because the component
crashes down) do not cause the naming service daemon to crash. Instead the corresponding
ACE_Name_Handler of the broken connection is cleaned up, and the naming service daemon
proceeds its service for other connected requestors.

Finally, the content of the database inside of the naming service daemon can be shown by
using the netsvc example from the ACE library. This example can be found in ACE under:

$ACE_ROOT/netsvcs/clients/Naming/Client

This tool can be started by using the same configuration file as is used for all components
in ACE/SmartSoft.

1.3 Naming Service inside a Component

1.3.1 Overview on the Overall Structure

As mentioned above the naming service is divided into two main parts, the provider of a
naming service and the requestors of the naming service. The provider is implemented as a
daemon and a requestor is used in each component. The main work horse of the requestor is
the class SmartNamingHelper. This class provides the main access point to the naming service
internally in each component in ACE/SmartSoft. Additionally, this class provides some
useful methods, that help for example to construct a name key and a value for the name/-
value entries in the naming service (see Doxygen for more information on these methods).
The class SmartComponent is the owner of this SmartNamingHelper. This means that the
SmartComponent is responsible to initialize, respectively to destroy the SmartNamingHelper.
Additionally, SmartComponent offers access to the SmartNamingHelper (through its public
interface) for all the service requestors and service providers which are registered with this
component. Thus, service providers can register, resp. remove its name/value entries in the
naming service and service requestors can resolve name/value entries for particular services
in the naming service.

Since the version 1.7.2 of ACE/SmartSoft, SmartNamingHelper is implemented as a
singleton. Thus, several components can be initialized inside of the same process (in different

16 CHAPTER 1. NAMING SERVICE

threads) and can use the same instance of the SmartNamingHelper. This saves resources and
offers a generic usage of the naming service in ACE/SmartSoft. In particular this allows
to map several components onto a single process as required in some operating systems.

Figure 1.5: Overview on the SmartSoft Naming Service as part of each component (informal
notion).

Figure 1.5 gives an overview of all interactions between a SmartComponent, its service
providers/requestors and the SmartNamingHelper. This overview presents an informal and
abstract view of the main parts which are of interest for the mapping of the SmartSoft idea
onto ACE structures in the ACE/SmartSoft implementation.

In brief the interactions consist of the following parts. The main focus in SmartCompo-

nent is related to its initialisation and its destruction. For example, during initialisation,
SmartComponent also initializes the SmartNamingHelper. During the destruction of the com-
ponent, it cleans up its resources including the SmartNamingHelper. In case that during the
destruction of a component one or some of its service providers crash down unexpectedly and
are thus not able to remove their entries from the naming service, SmartComponent cleans
up these entries as the last step before the component goes down. This is done by using the
smart_unbind method of the SmartNamingHelper. As described in section 1.1.3, this is not
really necessary, but leads to a cleaned up directory in the naming service to be more readable
(if showing its contents).

The interactions between a service provider, resp. service requestor and the naming service
are introduced in the next two subsections.

1.3. NAMING SERVICE INSIDE A COMPONENT 17

1.3.2 Communication Patterns: Service Requestor

As introduced in the previous subsection and illustrated in figure 1.5, the interactions of a
service requestor with the naming service affects only the connection procedure. A connect
internally uses the resolve method of the SmartNamingHelper to resolve the address to the
service provider. This address is used in the connect method of the service requestor to
establish the physical connection (internally based on a TCP socket in ACE/SmartSoft). The
resolve sequence is illustrated in figure 1.6.

Figure 1.6: Sequence diagram: Resolve.

The sequence Diagram for the resolve method includes the usage of the ACE patch as
described in section 1.1.2. As also shown in section 1.1.3 the resolve method comprises the
query as defined in [2, figure 5.85]. As result, the resolve method returns either a null,
which indicates successful resolution, or a value not equal to null, which indicates on a failed
resolution. A failed resolution occur if the requested key is not available in the naming service
or a communication error occurred. In case of a successful resolution the value parameter of
the resolve method provides the string that contains the address to the service provider (as
defined in table 1.1).

18 CHAPTER 1. NAMING SERVICE

1.3.3 Communication Patterns: Service Provider

As illustrated in figure 1.5, the interactions of a service provider with the naming service
affects only the creation and destruction procedures. A creation of a service provider results
in a call of the smart_rebind method in the SmartNamingHelper class. The destruction of
a service provider results in a call of the unbind method in the SmartNamingHelper class.
As shown in table 1.2 both methods, smart_rebind and unbind results in the same call of
the request_reply method of the ACE_Name_Proxy class. For this reason, it is sufficient to
explain only one of the two methods, the other one works in the same way. Thereto the
sequence of the smart_rebind method is illustrated in figure 1.7.

Figure 1.7: Sequence diagram: Rebind.

Again, the sequence Diagram for the smart_rebind method includes the usage of the
ACE patch as described in section 1.1.2. As also shown in section 1.1.3 the smart_rebind

method comprises the register call as defined in [2, figure 5.85]. Corresponding to the service
requestor the service provider registers its name as the key and the address of its service as
the value part. Additionally the type is set to the smarip string (as described in 1.1.2). This
triple is used to register the service provider in the naming service. A service requestor can
request for this entry in the naming service to establish connections with this service provider.

1.3. NAMING SERVICE INSIDE A COMPONENT 19

A rebind can fail only due to communication error. In this case it returns a value not equal
to null. Otherwise a null is returned, which indicates successful registration.

1.3.4 The Configuration File of a Component

The configuration file (shown in listing 1.4) – that is required by each component – defines in
principle how the class SmartNamingHelper should connect to the naming service daemon.
Thereto the configuration file contains of two main parts. The first part is shown in line
24 of listing 1.4. Because the class SmartNamingHelper is based internally on the service
configurator framework of ACE as described in [1, chapter 5], this line is necessary and is
not meant to be modified by framework users. The subsequent line 25, however, represents
the parameter string which can be modified by system developers (resp. framework users),
depending on the system where this particular component is executed. If a component must
be started with a different configuration, it is not necessary to recompile this component. A
restart reads again the configuration file.

1 # Note t ha t $PORT i s an environment v a r i a b l e t h a t i s

2 # au toma t i c a l l y i n t e r p r e t e d and s u b s t i t u t e d by ACE!

3 # s t a t i c ACE Naming Context ”main −p $PORT −h tango ”

4

5

6 # Fol lowing con f i g u ra t i on assignment can be read as f o l l o w s :

7 #1) dynamic : means the s e r v i c e w i l l be s t a r t e d and con f i gured dynamica l l y

8 (with t h i s s c r i p t)

9 #2) ACE Naming Context : i s the c l a s s name used in the implementat ion

10 (t h i s should not be modi f i ed)

11 #3) Serv i c eOb j e c t ∗ : t he type o f ACE Naming Context , i t s a Serv i c eOb j e c t

12 #4) ACE: t h i s i s the l i b r a r y (DLL or so) f i l e used f o r C l i en tS i d e s e r v i c e

13 # modify t h i s Name, i f l ibname changes .

14 #5) make ACE Name Acceptor () : i s the cons t ruc t o r used to i n i t i a l i z e Serv i c e

15 # p l ea s e do not modify t h i s , o the rw i s e Serv i c e wont work prope r l y

16 #6) Parameter s t r i n g passed to Serv i c e : t h e s e are the main con f i g u ra t i on

17 # opt ions to be modi f ied :

18 #6.1) F i r s t parameter i s the program ’ s name (i t i s i gnored in the s e r v i c e)

19 #6.2) −p : here i s the port−number used to f i nd NamingService

20 # p l ea s e modify t h i s parameter on your needs

21 #6.3) −h : hos t address where NamingService i s running

22 # p l ea s e modify t h i s parameter on your needs

23 #6.4) −c : Lets s e r v i c e search f o r NamingServie net−wide (do not modify t h i s)

24 dynamic ACE Naming Context Se rv i c e Ob j e c t ∗ ACE: make ACE Naming Context ()

25 ”main −p 8080 −h 1 2 7 . 0 . 0 . 1 −c NET LOCAL”

Listing 1.4: Configuration file for a component

20 CHAPTER 1. NAMING SERVICE

Chapter 2

Mapping of the Communication

Patterns

All communication capabilities of each component in ACE/SmartSoft are mainly based on
the Reactor pattern [3, chapter 3], which provides event handling and event demultiplexing
mechanisms inside of components. The Reactor pattern is implemented in the ACE_Reactor

class in the ACE library. That is, the ACE_Reactor implements an event based client-server
functionality that minimizes required resources. For example, an ACE_Reactor needs exactly
one thread of control, which is typically the main thread in a component. Each component
internally uses exactly one ACE_Reactor instance (see Figure 2.1). This instance is responsi-
ble to react on incoming events from the underlying communication mechanism and to call
appropriate handlers inside of service providers and service requestors which are attached to
this component. Therefore, the Acceptors, Connectors and ServiceHandlers (see below) from
communication patterns are registered in the Reactor. Thus, the Reactor can call the handler
methods of these classes.

The communication patterns of SmartSoft use a message protocol for interaction that
can be mapped onto all kinds of different middleware systems with all kinds of different
characteristics. The connection oriented split protocol as described in [2, section 5.6.6] only
requires that messages between a particular client and a particular server keep their initial
order and never pass each other [2, page 137]. In particular, all internal interactions of the
communication patterns are based on the (C∗/U) interaction pattern (see [2, section 5.6.6.2]
that requires only one-way messages and works with a reliable send policy, a delivered policy
and even a processed policy.

ACE provides different mechanisms to implement a message based system and due to the
flexibility of the SmartSoft protocol, different mappings are possible. The ACE/Smart-

Soft implementation uses a straight-forward mapping to keep the overall complexity of the
communication layer as low as possible. The reactor / acceptor / connector patterns of ACE
allow for a message based communication with a delivered policy where messages keep their

21

22 CHAPTER 2. MAPPING OF THE COMMUNICATION PATTERNS

order. Therefore, the communication layer of ACE/SmartSoft and its messages can be
directly mapped onto this generic ACE communication mechanisms.

1..1

1..1

0..*

0..1

1..1

SmartComponent
<<activeClass>>

<<Reactor>>

ServiceProvider<<Acceptor>>

<<ServiceHandler>>

ServiceRequestor<<Connector>>

<<ServiceHandler>>

main−thread of the component
executes event−loop of Reactor

one separate ServiceHandler for
each established connection to a
remote ServiceHandler

with a ServiceProvider

ServiceHandler exists only if its
ServiceRequestor is connected

<<component>>

ExampleComponent

<
<

re
g

is
te

re
d

 a
t>

>

from the component developer)
internal in the framework (hidden

Figure 2.1: The internal core structure of a component in ACE/SmartSoft.

The connector-acceptor pattern [3, chapter 3], is part of the ACE library. Each service
requestor uses an own instance of an ACE_Connector and each service provider uses an own
instance of an ACE_Acceptor (see Figure 2.1).

The ACE_Svc_Handler class from the ACE library provides a connection oriented and plat-
form independent peer-to-peer communication between two endpoints. It can be configured to
be a server, a client, or even both (by providing bidirectional communication). ACE/Smart-

Soft provides the class ServiceHandler, which is derived from the ACE_Svc_Handler class.
The responsibilities of a ServiceHandler are twofold. First, this class hides the complexity
of ACE_Svc_Handler and parametrizes it to perform bidirectional communication. Thus, a
ServiceHandler in ACE/SmartSoft is able to send messages to a remote endpoint and to
receive messages from a remote endpoint via a handler method. Second, this class implements
the glue logic between the events in the ACE_Reactor and the callback methods inside of the
communication patterns in ACE/SmartSoft.

Figure 2.2 shows further details of the structures as described above. Each service re-
questor internally creates a ServiceHandler during its connection procedure. A service
provider also internally creates a ServiceHandler for each connected service requestor. Thus,
a point-to-point connection (internally based on TCP sockets) is created. Each ServiceHan-

dler acts as a sender and as a receiver at the same time. Thus, on the one side (depending
on the communication pattern) a ServiceHandler sends a message and on the other side
a corresponding ServiceHandler receives a message, calls an appropriate callback method

2.1. SERVICE REQUESTORS 23

once per
component

Reactor

once per
service provider
instance

generic part of
service handler

generic part of
service handler

Acceptor

available
when connected
to provider

once per
service requestor
instance

generic part of
service handler

Connector

one interface
object per connected
service requestor

c
o

m
m

u
n

ic
a

ti
o

n
a

b
s
tr

a
c
ti
o

n

...

... ...

S
e

rv
ic

e
H

a
n

d
le

r

... ...

S
e

rv
ic

e
H

a
n

d
le

r

(service provider)
communication pattern

in
te

rf
a

c
e

p
a

tt
e

rn

Management
Component

c
o

m
m

u
n

ic
a

ti
o

n
s
y
s
te

m

...

<<create>>

communication pattern
(service requestor)

A

B

C

... ...

S
e

rv
ic

e
H

a
n

d
le

r

<<create>>

C
lie

n
tS

e
rv

ic
e

H
a

n
d

le
r

S
e

rv
e

rS
e

rv
ic

e
H

a
n

d
le

r

S
e

rv
e

rS
e

rv
ic

e
H

a
n

d
le

r

for illustration
purposes two times
the same interface

Figure 2.2: The Interface Objects implemented as ServiceHandler.

of the communication pattern and passes the message content to this callback method as a
parameter. This complies to the Interface Objects for incoming messages as described in [2,
page 161].

2.1 Service Requestors

An instantiation of a service requestor in ACE/SmartSoft causes an instantiation of an
internal Connector. The Connector of the service requestor is then ready to be connected
to an Acceptor which is available in a compatible service provider. A physical connection
between a service requestor and a service provider is available first in the connection procedure
and is destroyed in the disconnection procedure. Most of the details related to the mapping
of service requestors to one particular communication middleware can be shown by describing
the connection and disconnection procedures as shown in the following two subsections.

2.1.1 Connect

The whole connection procedure that is generic for all service requestors in ACE/SmartSoft

is shown in the sequence diagram in figure 2.3.

First, a key is created (using the method createNamingServiceKey from SmartNam-

ingHelper class) in the service requestor which represents the name of a service provider
to which the service requestor wants to connect. After that, this key is resolved (queried) in
the naming service. A successfully resolved key provides a TCP socket address to the remote

24 CHAPTER 2. MAPPING OF THE COMMUNICATION PATTERNS

Figure 2.3: Sequence diagram: Connection in a Service Requestor.

2.1. SERVICE REQUESTORS 25

Acceptor of the corresponding service provider. Additionally to the TCP socket address a
globally unique service identifier is returned which is later transmitted to the service provider
which checks if the service identifier is valid and accepts or rejects the connection.

Next, the physical connection between a service requestor and a service provider is estab-
lished by using the connector-acceptor pattern in ACE. For this purpose an instance of a local
ServiceHandler is created inside of the service requestor. This service handler is connected
to a remote endpoint by using the connect method in the local Connector. A remote Accep-

tor creates a corresponding endpoint - which is again a local instance of a ServiceHandler

- on demand.

Now, the connection channel is created and messages can be exchanged between the
two endpoints. From now on, the regular connection routine, which is independent of the
underlying communication mechanism, is continued. In brief, a service requestor generates a
connection id and sends a message containing this id and the service id to the service provider.
The service requestor then blocks on its internal AdministrativeMonitor (see [2, figure 5.92])
until the service provider replies on this message. A service provider validates the service id
and accepts or rejects the current connection, by sending a corresponding message back to
the service requestor. A service requestor now can switch into the connected state and return
with a corresponding status code. This procedure is described in detail in [2, page 158].

2.1.2 Disconnect

A complete disconnection procedure is shown in the sequence diagram in figure 2.4.

The first part of the disconnection procedure is independent of the underlying commu-
nication middleware. In brief, a service requestor sends a disconnect message to the service
provider, which immediately acknowledges the corresponding disconnection.

At this point a middleware specific problem occur. The destruction of the two Ser-

viceHandler, one in the service provider and one in the service requestor, must be carefully
implemented. The default behavior of the class ACE_Svc_Handler (resp. ServiceHandler) is
as follows. If one of the two endpoints in a point-to-point connection is destroyed, the other
endpoint automatically destroys itself also. This is reasonable on the first view, because this
guarantees that the resources are always cleaned up correctly, even in the cases where the
connection breaks down for different reasons. However, if an instance of this class is referenced
using pointers it can happen that this class cleans up itself and the pointer points into void.

The solution for this problem is that the responsibility - to clean up the ServiceHandler

class - must be transferred to the superordinate communication pattern. The reason is that
only inside of the communication pattern it can be decided when a ServiceHandler is safe
to be removed and when the corresponding pointers are not used any more. This behavior
can be implemented by overloading the handle_close callback method from the base class
ACE_Svc_Handler in the derived class ServiceHandler. The implementation of the han-

26 CHAPTER 2. MAPPING OF THE COMMUNICATION PATTERNS

Figure 2.4: Sequence diagram: Disconnection in a Service Requestor.

2.2. SERVICE PROVIDERS 27

dle_close method is changed such that only the internal socket connection is closed, but the
class remains accessible. The closure of the socket connection is necessary in the case where
the connection breaks down unexpectedly due to an error in the network. Even in this case
it is safe to close the internal socket, as shown in the following two scenarios.

• If a communication pattern tries to send a message using its ServiceHandler whose
internal socket connection meanwhile broke down, the send method returns immediately
with a return value not equal to null. This value is evaluated by the communication
pattern and a corresponding status code is returned.

• Even if the socket connection breaks down while a communication pattern is trans-
mitting a message it is noticed in the communication pattern and never leads to an
unexpected behavior. Thus, the delivered policy is always guaranteed.

With this customized behavior the regular destruction of the two ServiceHandler is
performed as follows. After the service provider has acknowledged the disconnection, it is
safe to remove the ServiceHandler on this side (because of the delivered policy). The
service requestor on the other hand receives the acknowledge-disconnect message and must
first process the hndAckDisc callback method before its ServiceHandler is also destroyed
(see figure 2.4).

2.2 Service Providers

An instantiation of a service provider in ACE/SmartSoft causes an instantiation of an in-
ternal Acceptor. This Acceptor is initialized with the Reactor instance from the component,
to which this service provider belongs to (resp. is attached to). Each Acceptor gets an own
TCP socket address (which is managed by the underlying OS). This TCP socket address is
used by Connectors in the network.

The lifetime of an Acceptor is directly linked to the lifetime of its superordinate service
provider. Because the connection and disconnection procedures are already described in
the foregoing section, in the following, the creation and destruction of a service provider is
explained.

2.2.1 Creation of a Service Provider

The creation of a service provider is an important procedure that has some points which are
individual according to the mapping of the service provider to one particular communication
middleware. The whole initialisation procedure is shown in the sequence diagram in figure
2.5.

The Acceptor inside of the service provider gets an own TCP socket address. This address
contains of a IP address and a port number. The port number is automatically chosen by

28 CHAPTER 2. MAPPING OF THE COMMUNICATION PATTERNS

Figure 2.5: Sequence diagram: Creation of a Service Provider.

the underlying OS from one of the currently unused port numbers. Additionally to the TCP
socket address the service provider generates a globally unique identifier, which represents a
service identifier that is unique over time and space.

The creation of the service provider is as follows. First a key is created, which represents
a unique name in the system for the service. This name is completely independent of the
underlying communication middleware. After that the Acceptor is created using the next
free port number. Next, a key/value entry is created that will be stored in the naming service.
The entry consists of a key being a middleware independent service name, and a value that
consists of the TCP socket address of the Acceptor and the service identifier. This entry is
stored in the naming service by using the smart_rebind method of the NamingHelper class.

In the case where the key is already available in the naming service, a warning message
is printed on the console and the value of the key is overwritten in the naming service. As
described in 1.1.3 it is always safe to rewrite (resp. rebind) entries in the naming service.

2.3. FURTHER DETAILS ON THE TRANSPORTATION OF DATA 29

2.2.2 Destruction of a Service Provider

The sequence diagram for the complete destruction procedure of a service provider is shown
in figure 2.6. The destruction of a service provider consists of the following two main parts.
First, the service provider asks all service requestors (which are currently connected to it)
to disconnect. Therefore the server-initiated-disconnect subprocedure is used. Second, after
all service requestors are successfully disconnected from this service provider, it removes its
name/value entry from the naming service and cleans up its internal resources.

The first step during the destruction of a service provider is to reset its serverReady

flag to null and to deactivate its Acceptor handler (see figure 2.6). This ensures, that from
now on, no new connections can be established and the internal list of the interface objects
remains stable. With that, it is possible to ask all currently connected service requestors to
disconnect from this service provider. This is done in the second step by using the server-
initiated-disconnect (short SID) procedure.

The SID procedure is independent of the mapping to the underlying communication mid-
dleware and is described in detail in [2, pages 193-195]. A mentionable detail is the realisation
of the active queue inside of the component management. The active queue decouples the SID
requests on the service requestors side. In ACE/SmartSoft the active queue is implemented
inside of the SmartComponent in the SIDHandler class.

Finally, after all clients are disconnected successfully, the key/value entry for this service
provider is unbound (removed) from the naming service and the rest of the resources are
cleaned up.

2.3 Further Details on the Transportation of Data

In the foregoing two sections the mapping of communication patterns on the ACE commu-
nication middleware are described with the main classes Reactor, Connector-Acceptor and
ServiceHandler. This mapping focuses on the interactions and coordinations between the
communication patterns and the communication middleware. That is, service providers and
service requestors now can interact with each other using the capabilities of ACE. However,
the communication itself provides additional details which are described in the following.

2.3.1 Memory Management and Communication Objects

The communication in terms of internal low level data transport in ACE/SmartSoft is
mainly based on the class SmartMessageBlock which in turn is a direct mapping on the
ACE_Message_Block class from the ACE library. The main function of this class is to store
a marshalled stream buffer. The communication between components in SmartSoft is done
by using communication objects. These objects provide both the platform dependent data

30 CHAPTER 2. MAPPING OF THE COMMUNICATION PATTERNS

Figure 2.6: Sequence diagram: Destruction of a Service Provider with SID.

2.3. FURTHER DETAILS ON THE TRANSPORTATION OF DATA 31

representation and the marshalling methods to transform this data into a platform indepen-
dent representation. For this reason each communication object must consist of the methods
get and set. The get method serialises the internal data of the communication object and
stores it in a local instance of a SmartMessageBlock class. This method does not modify the
internal data in the communication object, but makes a snap-shot copy of it. At this point
a pitfall can occur. The copy of the data is typically stored on the heap and the pointer to
this copy is passed on through several levels of the communication stack. In fact, the data is
passed from the user level (from communication objects) to the SmartSoft level (inside of
a communication pattern) and finally to the communication level (in ACE). It is very impor-
tant to clearly define where and when the data is used and where and when the data is not
needed any more and can be cleaned up. A not clear separation of responsibilities to create
and destroy this data can lead either to a memory leak or to a segmentation fault.

The solution for this problem can be described by means of the following two scenarios.

Sending a Message

The solution for the memory handling problem as described above can be discussed using
the send method from SendClient communication pattern. The sending functionality in
other communication patterns work accordingly. The method send gets a reference to the
communication object whose internal data has to be transferred to the connected SendServer.

Inside of the send method a copy of the internal data from the communication object is
fetched by calling the get method of the communication object. The data is then stored in
a local instance of type SmartMessageBlock. A pointer to this instance is forwarded to the
command method of the SendClientServiceHandler, which in turn forwards the request to
the send_command_message method of its base class ServiceHandler. The ServiceHandler

sends the data from the SmartMessageBlock reference on its internal socket connection and
returns with a success or an error code.

At this point the local instance of SmartMessageBlock in the send method from Send-

Client is not needed any more and must be cleaned up actively. Otherwise a memory leak
will occur. Thus, a rule of thumb is that the instance of SmartMessageBlock must be cleaned
up at the place where it was originally created. This is typically the place where the get

Method of the communication object is called.

Receiving a Message

The memory handling during the reception of a message can be explained with the SendServer
communication pattern. The message reception is triggered from the handle_input method
of the internal ServiceHandler class. There the data from the socket is received and is stored
inside of a local instance of a SmartMessageBlock. A pointer to this instance is forwarded to
the corresponding callback method hndCmd of the SendServer. There a local communication

32 CHAPTER 2. MAPPING OF THE COMMUNICATION PATTERNS

object is created and is filled with data by using its set method. From here on the instance
of SmartMessageBlock is not needed any more.

Again, the rule of thumb is the same as above that the instance of SmartMessageBlock
must be cleaned up at the place where it was originally created. This time, this place is the
handle_input method of the ServiceHandler class. To simplify the implementation a smart
pointer can be used in both cases for sending and receiving messages.

2.3.2 ServiceHandler and Callbacks

As shown in [2, page 158], different messages are communicated internally in SmartSoft

between service providers and service requestors. There are two different message types, the
administrative messages and data messages. Administrative messages are used internally
in SmartSoft to coordinate the internal states of a server provider and connected service
requestors. For example a call of the subscribe method of a PushNewestClient results in
an administrative message to the PushNewestServer. The other type of messages are data
messages. These messages are used to transmit the marshalled content of a communication
object. For example a call of the put method in a PushNewestServer (giving a reference of a
communication object as a parameter) results in marshalling of the communication object and
the transmission of its content in a data message to the PushNewestClient. The complete
overview of all possible messages in ACE/SmartSoft are listed in the table 2.1 in the
subsequent subsection.

One of the most important requirements in SmartSoft on the underlying communication
is the interoperability. This means, that the low level data on communication level must be
completely independent of any platforms (i.e operating system, byte order, architecture, etc.).
Therefore all messages must be transformed into a platform independent representation before
sending. After receiving a message on the receiver side the message must be transformed back
into representation corresponding to the current platform. For this purpose ACE provides
the common data representation (short CDR) stream classes. In particular the two classes
ACE_OutputCDR and ACE_InputCDR are of interest. ACE_OutputCDR provides a marshalling
mechanism to transform simple (platform specific) data types into internal platform indepen-
dent representation. The internal data representation in both CDR stream classes is based on
the class ACE_Message_Block. That is, ACE_Message_Block stores internally a buffer with
a marshalled representation, which can be directly transmitted on an ACE_Socket for exam-
ple. Finally, the CDR class ACE_InputCDR can use the data from a ACE_Message_Block and
transform it back into a platform specific representation in terms of demarshalling.

These three classes are the basis for all communication between components in ACE/S-

martSoft. The physical communication of the low level data on a TCP socket is encap-
sulated inside of the class SmartServiceHandler in ACE/SmartSoft. To simplify the
implementation of SmartNamingHelper and to provide a simple distinction between admin-

2.3. FURTHER DETAILS ON THE TRANSPORTATION OF DATA 33

istrative and data messages, this class internally implements a simple protocol, which uses
ACE_Message_Blocks as a basis. This protocol is described in the following.

Message Header: Has always a length of 16 Bytes and is structured as follows

| ByteOrder | CMD-ID | Param-length | MSG-length |

4 Bytes 4 Bytes 4 Bytes 4 Bytes

• The first 4 bytes are used by the communication middleware to decide whether to
swap or not the message content depending on the locally used byte order.

• The second 4 bytes are used by communication patterns in ACE/SmartSoft to
identify the type of the internal message. All allowed message types depending on
communication patterns are defined in the enumeration SmartCommand.

• If one particular message needs to transfer additional administrative parameters,
the next 4 bytes shows the length of the corresponding buffer. Otherwise the length
is set to 0.

• The last 4 bytes stores the length of the marshalled representation from commu-
nication object. For administrative messages this length is set to null.

Administrative Parameters: All administrative parameters - which are used inside of
ACE/SmartSoft and are needed to coordinate the service requestors with its service
providers - are stored in this buffer.

Message Content: This buffer contains the platform independent content of a communica-
tion object.

The class SmartServiceHandler provides a bidirectional point-to-point communication.
Thus, this class can be used on both sides as an endpoint.

For sending data this class provides the method send_command_message(...). As pa-
rameter, this method gets the command identifier, an optional message block containing
administrative parameters and an optional message block containing the content of a commu-
nication object. These three parameters are used to generate a corresponding message header
and to transfer the message payload to the remote endpoint. Considering the figure 2.2 as
sown at the beginning of this chapter, the send_command_message(...) method corresponds
to the generic interface C of a service requestor and a service provider. This method is called
from corresponding methods inside of the communication patterns. These methods are shown
in table 2.1 which corresponds interface B in figure 2.2.

Further, ServiceHandler implements the method handle_input which receives a message
from its internal socket according to the message header and delegates the contents to the

34 CHAPTER 2. MAPPING OF THE COMMUNICATION PATTERNS

method handle_incomming_message(...). The former method corresponds interface C of
a service requestor and a service provider in figure 2.2. The latter method is a pure virtual
method which must be implemented in derived classes. This is the main place where the
mapping to the callback functions of individual communication patterns is implemented,
which corresponds to interface B of a service requestor and a service provider in the figure.

2.3.3 Overview of all Messages in SmartSoft

Table 2.1 shows the complete set of messages (see [2, table 5.45 and 5.46]) which are used inter-
nally in corresponding communication patterns in their ACE/SmartSoft implementation.
The two patterns DynamicWiring and StatePattern are not listed in the table, because they
are both based on the Query pattern. Thus, these two patterns are completely independent
of any communication middleware details.

Pattern Receivable Messages

Send SmartSendServerInterface (Service Provider)
R0 StatusCode connect(int cid, ACE Utils::UUID *serviceID)
R1 StatusCode discard()
R2 StatusCode disconnect()
D StatusCode command(SmartMessageBlock *message)
SmartSendClientInterface (Service Requestor)
A0 StatusCode acknowledgmentConnect(int cid, int status)
A2 StatusCode acknowledgmentDisconnect()
R3 StatusCode serverInitiatedDisconnect(int cid)

Query SmartQueryServerInterface (Service Provider)
R0 StatusCode connect(int cid, ACE Utils::UUID *serviceID)
R1 StatusCode discard()
R2 StatusCode disconnect()
D StatusCode request(SmartMessageBlock *msg, int QueryID)
SmartQueryClientInterface (Service Requestor)
A0 StatusCode acknowledgmentConnect(int cid, int status)
A2 StatusCode acknowledgmentDisconnect()
R3 StatusCode serverInitiatedDisconnect(int cid)
D StatusCode answer(SmartMessageBlock *msg, int QueryID)

PushNewest SmartPushNewestServerInterface (Service Provider)
R0 StatusCode connect(int cid, ACE Utils::UUID *serviceID)
R1 StatusCode discard()

Table 2.1: The messages used internally by the communication patterns

2.3. FURTHER DETAILS ON THE TRANSPORTATION OF DATA 35

Internal messages in communication patterns (continued)

Pattern Receivable Messages

R2 StatusCode disconnect()
R4 StatusCode subscribe(int sid)
R5 StatusCode unsubscribe()
SmartPushNewestClientInterface (Service Requestor)
A0 StatusCode acknowledgmentConnect(int cid, int status)
A2 StatusCode acknowledgmentDisconnect()
R3 StatusCode serverInitiatedDisconnect(int cid)
D StatusCode update(const SmartMessageBlock*, int sid)

PushTimed SmartPushTimedServerInterface (Service Provider)
R0 StatusCode connect(int cid, ACE Utils::UUID *serviceID)
R1 StatusCode discard()
R2 StatusCode disconnect()
R4 StatusCode subscribe(int cycle, int sid)
R5 StatusCode unsubscribe()
R6 StatusCode getServerInformation()
SmartPushTimedClientInterface (Service Requestor)
A0 StatusCode acknowledgmentConnect(int cid, int status)
A2 StatusCode acknowledgmentDisconnect()
R3 StatusCode serverInitiatedDisconnect(int cid)
A4 StatusCode acknowledgmentSubscribe(int active)
A6 StatusCode serverInformation(double cycle, int active)
R7 StatusCode activationState(int active)
D StatusCode update(const SmartMessageBlock*, int sid)

Event SmartEventServerInterface (Service Provider)
R0 StatusCode connect(int cid, ACE Utils::UUID *serviceID)
R1 StatusCode discard()
R2 StatusCode disconnect()
R4 StatusCode activate(int mode, int aid, const SmartMessageBlock

*params)
R5 StatusCode deactivate(int aid)
SmartEventClientInterface (Service Requestor)
A0 StatusCode acknowledgmentConnect(int cid, int status)
A2 StatusCode acknowledgmentDisconnect()
R3 StatusCode serverInitiatedDisconnect(int cid)

Table 2.1: The messages used internally by the communication patterns

36 CHAPTER 2. MAPPING OF THE COMMUNICATION PATTERNS

Internal messages in communication patterns (continued)

Pattern Receivable Messages

A4 StatusCode acknowledgmentActivate(int status)
D StatusCode event(CHS::SmartMessageBlock *user, int id)

Table 2.1: The messages used internally by the communication patterns

2.4 Further Details explained with the PushNewest pattern

The implementation of the mapping of communication patterns to the ACE communication
middleware follows the same pattern which can be explained by using the PushNewest pattern
as an example. For this purpose, first the class diagram is explained to show the relationships
between single classes of the PushNewest pattern. After that, the relevant files are listed and
explained to give a quick overview for a framework builder who wants to map this pattern to
a different communication middleware (or searches for a particular part of the mapping).

2.4.1 Class Diagram

The internal structure with relevant classes for the mapping of the PushNewest pattern to
the ACE communication middleware is illustrated in figure 2.7. This structure is identical for
each other communication pattern, apart from some pattern specific, middleware independent
parts (like the QueryServerHandler for example).

The two interface classes SmartPushNewestClientInterface and SmartPushNewestServer-
Interface represent so called interface objects. They define all legal message calls which result
in corresponding messages on the communication channel. Thus, these interfaces define the
messages which can be internally transmitted from the PushNewestClient to the PushNewest-
Server and vice versa. An overview of all messages for all communication patterns is shown
in table 2.1 above.

The two classes PushNewestClient and PushNewestServer define the interface which can
be used by component developers and which is completely independent of any communica-
tion middleware details. The implementation of these classes provide the core logic of the
PushNewest pattern, which is independent of the communication middleware. This is done by
delegating message calls to corresponding service handlers and by providing callback methods
to receive messages from the service handlers.

The class SmartServiceHandler provides the method send_command_message to send mes-
sages on the communication channel. For this purpose this class has a direct access to its
internal TCP socket, which is connected to a corresponding remote service handler. This

2.4. FURTHER DETAILS EXPLAINED WITH THE PUSHNEWEST PATTERN 37

CHS::PushNewestClient

- SmartCVwithoutMemory cond

- SmartRecursiveMutex mutexConnection

- SmartAdministrativeMonitor monitorConnect

- SmartAdministrativeMonitor monitorDisconnect

- int session_id

- int connectionID

- void hndUpdate(void * , const SmartMessageBlock * , int sid)

- void hndAckConn(void * , int cid, int status)

- void hndServDisc(void * , int cid)

- void hndAckDisc(void *)

- PushNewestClient()

+ PushNewestClient(SmartComponent * component)

+ ~PushNewestClient()

+ StatusCode add(WiringSlave * slave, const std::string & port)

+ StatusCode remove()

+ StatusCode connect(const std::string & server, const std::string & service)

+ StatusCode disconnect()

+ StatusCode subscribe()

+ StatusCode unsubscribe()

+ StatusCode blocking(const bool b)

+ StatusCode getUpdate(T & d)

+ StatusCode getUpdateWait(T & d)

T

CHS::PushNewestServerServiceHandler

- int handle_incomming_message(ACE_CDR::Long command, ACE_InputCDR &cmd_is, ACE_InputCDR &msg_is)

+ PushNewestServerServiceHandler()

+ ~PushNewestServerServiceHandler()

+ void setCallbackFkts(void * , void (*)(void *, const PushNewestServerServiceHandler*,int,ACE_Utils::UUID*),

+ CHS::StatusCode update(const SmartMessageBlock * , int)

+ CHS::StatusCode acknowledgmentConnect(int cid, int status)

+ CHS::StatusCode serverInitiatedDisconnect(int cid)

+ CHS::StatusCode acknowledgmentDisconnect()

CHS::PushNewestClientServiceHandler

- int handle_incomming_message(ACE_CDR::Long command, ACE_InputCDR &cmd_is, ACE_InputCDR &msg_is)

+ PushNewestClientServiceHandler()

+ ~PushNewestClientServiceHandler()

+ void setCallbackFkts()

+ CHS::StatusCode subscribe(int sid)

+ CHS::StatusCode unsubscribe()

+ CHS::StatusCode connect(int cid, ACE_Utils::UUID * serviceID)

+ CHS::StatusCode discard()

+ CHS::StatusCode disconnect()

SmartPushNewestClientInterface

+ CHS::StatusCode update(const CHS::SmartMessageBlock * , int sid)

+ CHS::StatusCode serverInitiatedDisconnect(int cid)

+ CHS::StatusCode acknowledgmentConnect(int cid, int status)

+ CHS::StatusCode acknowledgmentDisconnect()

CHS::SmartServiceHandler

- int synchron_message_send(ACE_CDR::Long command, const ACE_Message_Block * further_comands, const ACE_Message_Block * message)

int handle_incomming_message(ACE_CDR::Long command, ACE_InputCDR & cmd_is, ACE_InputCDR & msg_is)

int clean_up_handler()

+ SmartServiceHandler()

+ ~SmartServiceHandler()

+ int open(void * handler = 0)

+ int handle_input(ACE_HANDLE fd = ACE_INVALID_HANDLE)

+ int handle_close(ACE_HANDLE handle, ACE_Reactor_Mask close_mask)

+ int send_command_message(ACE_CDR::Long commandId, const ACE_Message_Block *further_comands = NULL, const ACE_Message_Block *message = NULL)

+ ConnStatEnum connectionStatus()

SmartPushNewestServerInterface

+ CHS::StatusCode subscribe(int sid)

+ CHS::StatusCode unsubscribe()

+ CHS::StatusCode connect(int cid, ACE_Utils::UUID * serviceID)

+ CHS::StatusCode discard()

+ CHS::StatusCode disconnect()

clientProxy

subscriptions

next

serverProxy

acceptor

connector

CHS::PushNewestClientConnector

+ int connect(const ServiceHandler & hnd, const ACE_INET_Addr & addr, const ACE_SYNCH_OPT & opt)

<<struct>>

CHS::PushNewestClientList

+ int connection_id

+ int subscription_id

+ int subscribed

CHS::PushNewestServerAcceptor

int handle_input(ACE_HANDLE fd = ACE_INVALID_HANDLE)

+ PushNewestServerAcceptor(void * , void (*)(void *, const PushNewestServerServiceHandler*,int,ACE_Utils::UUID*),

+ ~PushNewestServerAcceptor()

+ int close_handler()

CHS::PushNewestServer

- SmartRecursiveMutex mutexClientList

- SmartMonitor monitorServerInitiatedDisconnect

- ACE_Utils::UUID_Generator uuid_genrator

- ACE_Utils::UUID * service_identifier

- SmartComponent * component

- std::string service

- int serverReady

- void hndConnect(void * , const PushNewestServerServiceHandler * , int , ACE_Utils::UUID *)

- void hndDiscard(void * , const PushNewestServerServiceHandler *)

- void hndDisconnect(void * , const PushNewestServerServiceHandler *)

- void hndSubscribe(void * , const PushNewestServerServiceHandler * , int)

- void hndUnsubscribe(void * , const PushNewestServerServiceHandler *)

- PushNewestServer()

+ PushNewestServer(SmartComponent * component, const std::string & service)

+ ~PushNewestServer()

+ StatusCode put(const T & d)

T

Figure 2.7: Class diagram overview of the PushNewest pattern

method is used for both, to transfer administrative messages which coordinate the internal
states of the PushNewestClient and PushNewestServer, and the data payload from communi-
cation objects which is transmitted in this case from PushNewestServer to PushNewestClient.
The method send_command_message internally calls the method synchron_message_send

which in turn processes the real transmission taking the delivered policy into account.

Each TCP socket is controlled out of the Reactor in ACE. On arrival of a message on the
socket an input-event is fired which is handled by the Reactor by calling the handle_input

method of a corresponding service handler. Inside of the service handler the incoming data
stream is received and demarshalled according to the header of the message. This step is in-
dependent of the message content and is always the same for all communication patterns. In
the next step the message is processed individually for each communication pattern. There-
fore the pattern specific method handle_incomming_message is called. Inside of this method
a dispatching is performed where one of the callback methods of the corresponding commu-
nication pattern is called. For the dispatching the command-id is used (see corresponding
enumeration in Doxygen1).

The whole procedure for a service provider is shown in the following by means of a Push-

1http://smart-robotics.sourceforge.net/aceSmartSoft/doxygen/namespace_c_h_s.php

38 CHAPTER 2. MAPPING OF THE COMMUNICATION PATTERNS

NewestPattern. A connect call from a PushNewestClient to the PushNewestServer results
in a call of the handle_input of the PushNewestServerAcceptor. This method internally
creates a new instance of a PushNewestServerServiceHandler which is the individual end-
point for the connection. To be able to register this PushNewestServerServiceHandler in
the Reactor, PushNewestServerServiceHandler is derived from the SmartServiceHandler

class. During the initialisation of the PushNewestServerServiceHandler, the function point-
ers of the static upcalls in the superodinate communication pattern are initialized. For this
purpose the PushNewestServerAcceptor internally contains these pointers. For the Push-
NewestServer pattern there are the following pointers available: hndConnect, hndDiscard,
hndDisconnect, hndSubscribe and hndUnsubscribe. Finally, the PushNewestServerSer-

viceHandler is activated such that it is ready to receive/send messages. The connection is
finished first if a corresponding connection message arrives in the PushNewestServerSer-

viceHandler and the service identifier (inherited in this message) matches the local service
identifier in the PushNewestServer pattern. In this case an acknowledgement connect message
is replied.

For a service requestor this procedure is shown by means of the PushNewestClientPat-
tern. The method connect of this class uses the PushNewestClientConnector to create and
connect a new instance of a PushNewestClientServiceHandler. This represents the phys-
ical connection to the PushNewestServer. After that the connection message is transmitted
to the PushNewestServer and the connection is successfull if an accept-connection message
replies. According to the service provider, the following upcall messages are available in
PushNewestClient: hndUpdate, hndAckConn, hndServDisc and hndAckDisc.

2.4.2 File structure

The file structure for each communication pattern follows always the same pattern. Therefore
the structure can be explained using the PushNewest communication pattern as an example.

• smartPushNewest.hh

A component developer in the role of a framework user must include this file to use the
PushNewest communication pattern.

• smartPushNewest.th

This file contains the implementation of the templates from the PushNewest commu-
nication pattern. This file is only to modify by the framework builder. In fact this
file implements the core logic which is independent of the underlying operating system
and communication middleware. This logic can be used as a basis for mappings of this
pattern to different communication middlewares.

• smartPushNewestPattern.hh,
smartPushNewestServerPattern.hh, smartPushNewestClientPattern.hh,

2.4. FURTHER DETAILS EXPLAINED WITH THE PUSHNEWEST PATTERN 39

smartPushNewestServerPattern.cc, smartPushNewestClientPattern.cc
The interface objects defined in the first file represent the two interfaces (client and
server) containing all messages which PushNewest pattern is able process. The subse-
quent two header files contain the definition for the implementation of these interfaces
and the service handler objects. Additionally the smartPushNewestServerPattern.hh

file contains the definition of the Acceptor for PushNewestServer. smartPushNewest-

ClientPattern.hh file contains the definition of the Connector for PushNewestClient.
The last two files contains the implementation of the service handler objects as well
as the Acceptor (and resp. Connector). A framework builder - who wants to map
this communication pattern to one other communication middleware - must modify the
mapping in these files. For example the method handle_incomming_message - which
process the mapping from a general message coming from the handle_input method
to the callback functions of the pattern - is also implemented there.

• smartServiceHandler.hh, smartServiceHandler.cc
This file contains the pattern independent glue logic for the mapping to the underly-
ing communication middleware. This logic contains of a generic implementation of the
point-to-point communication channel called SmartServiceHandler. The pattern inde-
pendent part to receive messages is implemented in the handle_input method and to
send messages is implemented in the send_command_message(...) method. These files
are also only to modify by a framework builder, who wants to map the communication
object to a different communication middleware.

40 CHAPTER 2. MAPPING OF THE COMMUNICATION PATTERNS

Chapter 3

The SmartSoft Kernel

3.1 The Number of Threads inside a Component

The SmartSoft framework allows a component developer to use an arbitrary number of
threads on the user level. ACE/SmartSoft is completely thread safe, thus all communi-
cation patterns and the SmartComponent class can be used out of arbitrary threads at the
same time. Besides the user threads, a SmartComponent requires a set of threads to handle
its internal activities. These threads are described in the following.

In principle there are two options for how many threads are at least needed inside a
component in ACE/SmartSoft. Both options are suitable solutions for the mapping of
SmartSoft to the ACE communication middleware and have their pros and cons. Both
options (labeled A and B) are described in detail in the following sections. The current version
1.7.2 of ACE/SmartSoft implements option B for efficiency reasons as will be explained in
detail.

3.1.1 The minimum number of Threads

Independently of the option A or B, each component requires a minimum number of threads
for its internal activities. The class SmartComponent in ACE/SmartSoft operates the
communication of a component by grasping the thread which called its run method. Besides
grasping that calling thread, it starts three more threads:

Main Thread: The run method of a component uses the calling thread to run its main
loop. This thread is provided from outside. In most cases, the run method is called
from the main program. The main loop handles all the communication activities of the
component.

TimerThread: Each component implements a timer, which is used to handle all timings
of a component. The timing service is for example used by the push timed communi-
cation pattern. The PushTimedServer gets regularly triggered to provide updates to

41

42 CHAPTER 3. THE SMARTSOFT KERNEL

subscribed clients. A component wide timer is much more reasonable than having indi-
vidual timers in each push timed server instance, for example. In the future, the timer
will also be used to implement timeouts at the user API of the communication patterns.
The timer needs its own thread to ensure that it can trigger activities independently of
the communication activities.

SIDhandler: The Server Initiated Disconnect Procedure as described in section 5.6.6.10 of [2]
requires an active queue. The active queue is set into operation within the run method
of SmartComponent. However, as long as no server initiated disconnect activities are
being invoked, this thread is just blocked and pending.

ShutdownTask: The shutdown of a component requires an independent thread to coordinate
the shutdown process. This thread is openend when the shutdown of a component
is invoked. At runtime of a component, this thread is not openend and thus does
not require any resources. The main functionality of the ShutdownTask is to process
the shutdown procedure, to observe the clean-up of resources and to ensure that a
component is closed in all cases, even if some of the tasks do not shutdown cooperatively
(see section 3.3).

Details of the mapping of the connection oriented split protocol are explained on pages
197-199 of [2]. In the most general case, a service requestor possesses two interface objects,
namely the one for incoming messages and the one for outgoing messages. A service provider
possesses one interface object for incoming messages and an interface object for each connected
client.

The structure of the interface objects within the mapping of the communication patterns
on ACE/SmartSoft has already been illustrated in figure 2.2. The ACE/SmartSoft im-
plementation of the interface objects differs from the most generic implementation illustrated
in figure 5.105 of [2] as follows:

• instead of having separate interface objects for incoming and outgoing messages, the
ACE/SmartSoft implementation of a service requestor just uses a single interface
object that handles all incoming and outgoing messages.

• instead of having one interface object for all incoming messages and one interface ob-
ject per connected client for the outgoing messages, we again have combined interface
objects. In case of the service provider, there is an interface object per connected client
that handles all incoming and outgoing messages for that particular client.

Merging the interface objects for incoming and outgoing messages as described above is
reasonable since the ACE service handlers support two-way communication. As explained
in section 5.6.6.11 of [2], the interface object for incoming messages of all service requestors

3.1. THE NUMBER OF THREADS INSIDE A COMPONENT 43

can share one thread. In contrast, each interface object for incoming messages at a service
provider requires its own thread. Since the ACE/SmartSoft implementation combines the
interface objects for incoming and outgoing messages, the set of required threads needs to be
chosen carefully. The two different kinds of mapping are described as option A and option B.

3.1.2 Option A

Each component possesses only a single reactor that dispatches the incoming messages to the
appropriate service handlers. A service handler represents the interface object of a particular
service requestor or service provider. The reactor of a component is run by the thread that
called the run method of SmartComponent.

ACE provides the class ACE_Svc_Handler which is used to implement the interface ob-
jects in ACE/SmartSoft. In its default implementation, this class is passive. Its handler
methods for incoming messages are triggered by the reactor at which the ACE_Svc_Handler

is registered. The ACE_Svc_Handler can be parameterized and implemented as an active
object that uses its own thread of control as shown in [1, page 215]. That already comes close
to the requirement explained in section 5.6.6.11 of [2].

However, there is still a single reactor handling all incoming messages for service providers.
Therefore, it might now happen that the single reactor is not able to forward incoming mes-
sages for a service provider in case the according ACE_Svc_Handler cannot accept the incom-
ing message. That might happen because a tailback of messages for that particular service
provider does not allow the reactor to forward the message to the interface object. In that
situation, the reactor gets blocked as well and thus, even messages for other service providers
get not forwarded anymore due to the blocked reactor.

To overcome that situation, the overall correct implementation would be to have individual
reactors per interface object at service providers. At a service provider, only one service
handler is registered at the reactor and thus no decoupling of the reactor and the interface
object is required. Therefore, the ACE_Svc_Handler can be passive with a thread per reactor.

All interface objects of service requestors can share a single reactor (that is operated
by a thread) and all registered ACE_Svc_Handler can be passive. At service requestors, it
is guaranteed that all upcalls into the communication patterns can forward their messages
without blocking. Thus, a single thread of the shared reactor cannot be blocked and thus can
be shared.

However, this most generic solution would require one reactor for all service requestors
of a component and a reactor per service provider of a component. Each reactor requires
a thread to be operated. Of course, since only a single service provider is attached to the
reactor, this thread could also be used via the upcalls to the SmartSoft communication
pattern to operate the user level handler to process incoming requests. However, as soon as
we need a different threading model at the user level (using SmartProcessingPatterns, e.g.

44 CHAPTER 3. THE SMARTSOFT KERNEL

a thread pool), the upcalling thread is not fully utilized anymore.

3.1.3 Option B

This option uses a single reactor per component that operates all interface objects. However,
we now have to ensure that the reactor never gets blocked by not being able to forward
incoming messages to appropriate ACE_Svc_Handlers. The only critical upcalls from the
reactor via a ACE_Svc_Handler into a communication pattern are user level handlers at service
providers. User level handlers are only provided with the SendServer and the QueryServer.

With option B, passive user level handlers of service providers are not allowed to block
on resources that depend on communication. For example, a passive handler is not allowed
to wait for a resource which gets released only after further communication took place. Of
course, it is also not allowed to invoke further communication from within a passive handler.
The only allowed communication from within a passive handler is to call the answer method
of the query service provider.

With active user level handlers, any kind of blocking is not a problem as long as the active
user level handler accepts incoming requests for himself. The user level handler can enqueue
incoming requests and in case of too many open requests reject processing them by answering
with appropriate states in the answer to the service requestor.

That overall scheme of when to use active handlers and when to use passive handlers for
processing requests at service providers is already recommended good practice and is thus
compatible to the already established use of the communication patterns.

The mapping of option B is implemented in ACE as follows. The base class ACE_Svc_Hand-
ler can be used for both, the service requestors and the service providers in the same way.
In the current implementation of ACE/SmartSoft this class is derived in the SmartSer-

viceHandler class, which is parameterized to be both, a sender and a receiver at the same
time. This class can be registered in the Reactor and a component can use the same Reactor
for all communication patterns. Thus, the component needs only one main thread (plus the
internal TimerThread and SIDhandler thread as described above).

Although the component developer must use the two handlers SendServerHandler and
QueryServerHandler with more care, he gets also more freedom to optimize the efficiency
of his component. The number of threads can be reduced to the very minimum. A nice
side effect is that the implementation of the communication patterns in ACE/SmartSoft

is simplified.

Summing up, both approaches – Option A and B – have their pros and cons. Currently
the option B is implemented in the ACE/SmartSoft version 1.7.2. However, the option A
can be implemented accordingly, because the ACE library allows both versions.

3.2. SMARTCOMPONENT 45

3.2 SmartComponent

SmartComponent is the main class of each component in SmartSoft. It can be seen as
a component hull which implements the core functionality required in every component in
SmartSoft. During the creation of a component, it initializes several resources (like internal
threads as described in the previous section) which are used for example by communication
patterns. More details for the initialisation procedure are shown in the first part in the
following. A further important aspect of each component is its destruction (resp. shutdown)
procedure, which is described in the second part below.

3.2.1 SmartComponent Initialization

The initialization procedure of a SmartComponent in ACE/SmartSoft is shown in the se-
quence diagram in figure 3.1.

The main focus during the initialization of a component in SmartSoft is to initialize
its internal resources. In ACE/SmartSoft there are the following fife resources: SIDhan-

dler, ShutdownTimer, TimerThread, NamingHelper and the Reactor. The meaning of the
threads SIDhandler, ShutdownTimer and TimerThread is described in the foregoing section
3.1. The initialisation of the NamingHelper and the Reactor provides further details, which
are described in the following.

As introduced in chapter 1 the naming service has a provider and a requestor sides. The
provider is implemented as the naming service daemon. The daemon provides a centralised
directory service. Therefore the daemon must be started before any of the components can be
initialised. The requestor is implemented as the NamingHelper class in ACE/SmartSoft.
This class is used by each component and the communication patterns in particular. In the
current version 1.7.2 of ACE/SmartSoft this class is implemented as a singleton. This has
the consequence that a separate instance of this class is initialized for each component in
case that each component is initialised in a separate process (or even separate machine in
the network). For the case where several components are initialised in the same process (in
separate threads) only one instance of NamingHelper is initialized by the component which
accesses this class at first. The other components in the same process share the same instance
of the NamingHelper class.

This is convenient for the following reasons. An arbitrary number of naming service re-
questors can be connected to the naming service daemon and the daemon can handle an
arbitrary number of requests without causing a deadlock. All requests coming from different
requestors are serialized in the naming service daemon. The consequence is that if several
requestors query for key/value entries in the naming service daemon at the same time, some of
these requestors must wait before other requests are finished. This is not critical in ACE/S-

martSoft, because any requests occur only in the initialization of service providers or in

46 CHAPTER 3. THE SMARTSOFT KERNEL

Figure 3.1: Sequence diagram: Initialization of a component.

3.2. SMARTCOMPONENT 47

the connection routine of service requestors. For example a connection routine is defined in
SmartSoft such, that it can take up to one second to complete the connection. This time is
capable in regular cases, otherwise a timeout return value indicates a connection problem in
the corresponding service provider, which is a regular (and uncritical) behavior. Thus, a little
delay for naming service requests does not violate any critical timings inside of components.

The NamingHelper class is based internally on a Service Configurator Framework of ACE
as described in [1, chapter 5]. This feature provides the possibility to initialize a dynamic
service – in this case it is the naming service requestor in the form of a NamingHelper – by
using a configuration file for to parametrize this service. This allows to use a component with
different configurations (the naming service and the components can be started on arbitrary
machines) without recompilation. Of course, if the component must be executed on a machine
with a different architecture to that where the components was compiled for, this component
must be recompiled.

Additionally thereto the class NamingHelper tries internally to connect to the remote
naming service daemon and fails if either the daemon is not running or is not reachable on
the TCP address as defined in the configuration file. The consequence of this is, that a
successful initialization of a SmartComponent in ACE/SmartSoft is only successful if the
following conditions are met:

1. The configuration file for the component is available and the component is able to access
this file (either using the default location – which is the local folder – or the −f console
parameter)

2. The naming service daemon is not running or is not reachable with the TCP address
that is given in the configuration file.

3. The internal connection procedure of the NamingHelper is successful and the service is
started.

A violation of one of these conditions result in a corresponding error message on the console
and an abortion of the component’s initialisation procedure. A component is not started in
this case. Otherwise the component proceeds with the opening of the TimerThread.

After that, the Reactor of this component is initialised. Again, the Reactor needs to be
started separately for each component, as described in the foregoing section. Finally, the
component registers its handler to react on the SIGINT signal, which is fired for example with
the keys Ctrl+C. The component is now fully initialised, but is not actively running. The
component runs first, after the call of its run method.

3.2.2 Shutdown Procedure of SmartComponent

The shutdown procedure of a SmartComponent in ACE/SmartSoft is shown in the sequence
diagram in figure 3.2. As described in the foregoing subsection the component reacts on the

48 CHAPTER 3. THE SMARTSOFT KERNEL

SIGINT signal (resp. Ctrl+C key combination). In fact, the SIGINT signal is cached by the
Reactor of the component. The Reactor, on the other hand, calls the internal handle_signal
method of the SmartComponent, which in turn initialises the shutdown procedure.

Figure 3.2: Sequence diagram: Handling of ctrl+c by a component.

The whole shutdown procedure is completely independent of the underlying communi-
cation middleware. However, the thread management is based on the platform independent
threading features provided in the ACE library. The procedure consists of the following steps:

• First, the component switches its internal blocking state to false. This is a powerful
feature in SmartSoft to unblock all attached communication patterns such that all
ManagedTasks which are blocked on communication are able to shut down. The conse-
quence is, that all blocked service requestors and service providers unblock immediately
with a corresponding status code.

• After that, the ManagedTasks are signalled to shut-down. Therefore the so called coop-
erative cancellation is performed. This is done using the ACE_Thread_Manager, which
runs as a singleton in the process. The corresponding ManagedTasks recognise the cancel
signal and end up their thread main loop. This is described in more detail in 3.3.

• Immediately after signaling the threads, the ShutdownTimer is started. This is per-
formed by calling its start method and the reference to the component’s TimerThread
is passed as parameter.

3.2. SMARTCOMPONENT 49

• The start method of the ShutdownTimer consists of the following steps. First, the
reference to the TimerThread is used to initialise a one-shot timer. With that, the time
is specified, how long the ShutdownTimer waits before shutting down the component.
This time is necessary to give the ManagedTasks a chance to clean up their resources
and to close their threads.

• If all ManagedTasks closes in time, the ShutdownTimer deactivates the timer and shuts
the component down (immediately after the last of ManagedTasks is closed).

• If one (or some) of the ManagedTasks do not close in time (for example because the task
blocks on a uncontrolled resource), a timeout occur and the timer_expired method of
ShutdownTimer is called. In this case the ShutdownTimer do not wait any longer and
shuts down the component immediately. Thereby, all entries in the naming service
which are related to the service providers of this component are cleaned up by calling
the smart_unbind method of the NamingHelper class. After that, the NamingHelper

and the Reactor’s main loop are closed. This procedure is illustrated in the sequence
diagram in figure 3.2.

3.2.3 Administrative Monitor in SmartComponent

An overview of all classes – which directly interact with the SmartComponent class – are shown
in the class diagram in figure 3.3.

SmartCVwithMemory

- bool signalled

- bool statusBlockingComponent

- bool statusBlockingPattern

- bool statusBlockingUser

+ SmartCVwithMemory()

+ ~SmartCVwithMemory()

+ SmartCVwithMemory(const SmartCVwithMemory &)

+ SmartCVwithMemory & operator =(const SmartCVwithMemory &)

+ void blockingUser(const bool)

+ void blockingPattern(const bool)

+ void blockingComponent(const bool)

+ void signal()

+ CHS::StatusCode wait()

+ CHS::StatusCode wait(const ACE_Time_Value & timeout)

+ void reset()

SmartCVwithoutMemory

- bool statusBlockingComponent

- bool statusBlockingPattern

- bool statusBlockingUser

+ SmartCVwithoutMemory()

+ ~SmartCVwithoutMemory()

+ SmartCVwithoutMemory(const SmartCVwithoutMemory &)

+ SmartCVwithoutMemory & operator =(const SmartCVwithoutMemory &)

+ void blockingUser(const bool)

+ void blockingPattern(const bool)

+ void blockingComponent(const bool)

+ void signal()

+ CHS::StatusCode wait()

+ CHS::StatusCode wait(const ACE_Time_Value & timeout)

SmartMonitor

- int nested_level

bool signalled

bool statusBlockingComponent

bool statusBlockingPattern

bool statusBlockingUser

void clear_nested_level()

void restore_nested_level()

+ SmartMonitor()

+ ~SmartMonitor()

+ void blockingUser(const bool)

+ void blockingPattern(const bool)

+ void blockingComponent(const bool)

+ int acquire()

+ int release()

+ void broadcast()

+ void reset()

+ CHS::StatusCode wait()

+ CHS::StatusCode wait(const ACE_Time_Value & timeout)

SmartComponent

- bool statusComponentBlocking

- bool condCancel

- int msgCnt

- int hndCnt

- std::string componentName

TimerThread timerThread

int handle_signal(int signum, siginfo_t * , ucontext_t *)

+ SmartComponent(const std::string & server, int & argc, char * * argv)

+ ~SmartComponent()

+ StatusCode run(void)

+ TimerThread & getTimerThread()

+ StatusCode blocking(const bool b)

+ std::string getComponentName(void)

+ CHS::StatusCode addCV(SmartCVwithMemory * cond)

+ CHS::StatusCode removeCV(SmartCVwithMemory * cond)

+ CHS::StatusCode addCV(SmartCVwithoutMemory * cond)

+ CHS::StatusCode removeCV(SmartCVwithoutMemory * cond)

+ StatusCode waitForCond(SmartCondClass & cond)

+ StatusCode waitForCond(SmartCntCondClass & cond)

+ void enqueue(void * ,

+ void sign_on(void * ptr)

+ void sign_off(void * ptr)

ShutdownTimer

- std::string component_name

- CHS::TimerThread * timer_thread

- long timer_id

- bool timer_started

- ACE_Time_Value timeout

- void shutdown()

+ ShutdownTimer(const ACE_Time_Value time = ACE_Time_Value(2))

+ ~ShutdownTimer()

+ void set_naming_service(SmartNamingHelper * naming, const std::string & comp_name)

+ int start(CHS::TimerThread * tm)

+ int stop()

+ void timerExpired(const ACE_Time_Value & , const void *)

SmartAdministrativeMonitor

+ int connection_id

+ int statusA0

+ SmartAdministrativeMonitor()

+ ~SmartAdministrativeMonitor()

+ void prepare(int cid = 0)

+ void signal(int cid = 0, int status = (int)CHS::SMART_OK)

+ CHS::StatusCode wait()

+ CHS::StatusCode wait(const ACE_Time_Value & timeout)

<<typedef>>

SmartRecursiveMutex

SmartNamingHelper

- bool useNamespace

ACE_Recursive_Thread_Mutex mutex

int addrToStr(const ACE_INET_Addr & addr, ACE_TString & string)

int strToAddr(const ACE_TString & string, ACE_INET_Addr & addr)

int addrToPortstr(const ACE_INET_Addr & addr, ACE_TString & value)

int portStrToAddr(const ACE_TString & value, ACE_INET_Addr & addr)

+ SmartNamingHelper(bool withRemoteNamespace = false)

+ ~SmartNamingHelper()

+ void set_use_namespace(bool withRemoteNamespace)

+ void close_naming_context(void)

+ int bind(const ACE_TString & name, const ACE_TString & value)

+ int rebind(const ACE_TString & name, const ACE_TString & value)

+ int smart_rebind(const ACE_TString & name, const ACE_TString & value)

+ int resolve(const ACE_TString & name, ACE_TString & value)

+ int unbind(const ACE_TString & name)

+ int smart_unbind(const char * component_name)

+ ACE_TString createNamingServiceKey(ACE_TString component, ACE_TString pattern, ACE_TString serv...

+ int createNamingServiceValue(ACE_TString value, ACE_INET_Addr addr, ACE_Utils::UUID uuid)

+ int createNamingServiceSmartValue(ACE_TString value, ACE_INET_Addr addr, ACE_Utils::UUID uuid)

+ int parseNamingServiceValue(ACE_TString value, ACE_INET_Addr addr, ACE_Utils::UUID uuid)

+ int getAddressForListening(ACE_INET_Addr & addr)

+ int search_config_file(int argc, char * argv[])

+ int search_initialized_service(ACE_TString service_name = "ACE_Naming_Context")

mutex

cond

listCVwithoutMemory

cond

next

cond

next

listCVwithMemorynaming_helper

shutdown

namingService

<<typedef>>

SmartConditionRecursiveMutex

<<struct>>

SmartCVwithoutMemoryStruct

<<struct>>

SmartCVwithMemoryStruct

Figure 3.3: Class diagram: Overview of classes directly related to SmartComponent.

50 CHAPTER 3. THE SMARTSOFT KERNEL

The ShutdownTimer and the NamingHelper (in figure 3.3 on the left) are described in
the foregoing subsection. A description of all methods is online available in Doxygen1. The
class SmartComponent uses internally the wrappers SmartCVwithMemory and SmartCVwith-

outMemory implement blocking calls inside of communication patterns. These two classes
simple wraps the functionality of the class ACE_Condition_Thread_Mutex, available in the
ACE library.

Additionally to the two classes, the Monitor class and the AdministrativeMonitor class
in particular are used inside of communication patterns to implement the connection and
disconnection procedures. These two classes implement the specification defined in [2,
pages 170-174]. As a basis the two classes SmartConditionRecursiveMutex and SmartRe-

cursiveMutex are used. The SmartConditionRecursiveMutex is a mapping on the class
ACE_Condition_Recursive_Thread_Mutex and SmartRecursiveMutex directly maps on the
class ACE_Recursive_Thread_Mutex, which are both available in the ACE library.

3.3 ManagedTasks

One of the core features in the ACE/SmartSoft implementation is the ManagedTask class. This
class derives from the ACE_Task class in the ACE library and enhances it by the feature to
manage this task out of the corresponding component. This management affects the creation
and the destruction of ManagedTasks. In the following the current implementation of the
ManagedTask is described which can be found in the ACE/SmartSoft version 1.7.2.

The core functionality of the ManagedTasks is to provide a unified and platform indepen-
dent possibility to implement multithreading applications (resp. components) for a component
developer. For this purpose the ManagedTask internally parametrises its base class such that
one LWP2 thread is started by calling the start method of ManagedTask. According thereto,
the ManagedTask can be stopped by calling its stop method.

The methods on_entry, on_execute and on_exit can be used to implement the logic,
which is intended to be executed out from the internal thread inside of the ManagedTask.
In brief, the on_entry method is called (out of this thread) once after the thread is started
and can be used to implement the initialisation of resources which might be used in the
thread. The on_execute method is called from an infinite loop (out of the thread) till the
ManagedTask is signalled to close (see below). The on_exit method is called once after the
internal thread loop is left and is the last method that is called before the thread exits. This
method is meant to clean up resources that are used in the thread (for example close files,
etc.).

On the first view the class ManagedTask is independent of the SmartComponent and can be
used as is without limitations. However, if using this class together with a SmartComponent it

1http://smart-robotics.sourceforge.net/aceSmartSoft/doxygen/namespace_c_h_s.php
2Light-Weight-Process

3.3. MANAGEDTASKS 51

provides one additional feature. If a pointer to a SmartComponent is passed as an parameter
in the constructor of the ManagedTask, this task becomes managed by this component. This
means, that if the component shuts down, it can prior to that signal this task to close down
and the component waits till the task is down (or a timeout occur – see previous section).

The closure of a ManagedTask from a SmartComponent works as follows. As shown in
figure 3.2 the component uses the ACE_Thread_Manager to signal tasks to close by calling the
cancel_task method. For the parameter argument of this method, the component uses an
internal instance of type ACE_Task. A pointer of to this instance is passed as parameter in the
cancel_task method. This has the following reason. The class ACE_Thread_Manager needs
an instance of type ACE_Task, which can be used as the parent object for other ACE_Task

instances. In other words a set of ACE_Tasks can be associated with one particular instance
of ACE_Tasks (the base task). This has the advantage, that now a call of cancel_task, giving
the pointer to the base task, closes all associated tasks also. This base task represents an
empty hull and its internal thread must not be running for this feature. Thus, the base task
does not use additional (unnecessary) resources.

1 int ManagedTask : : s t a r t ()

2 {
3 ACE GUARD RETURN(CHS : : SmartRecursiveMutex , guard , mutex , −1) ;

4

5 i f (! t h r ead s t a r t ed)

6 {
7 int r e t v a l = this−>a c t i v a t e

8 (

9 THR NEW LWP // i n i t i a l i z e as kerne l− l e v e l thread

10 ,1 // i n i t i a l i z e e x a c t l y one thread

11 ,0 // do not f o r c e to a c t i v a t e i f a l r eady a c t i v a t e d e a r l i e r

12 ,ACE DEFAULT THREAD PRIORITY // d e f a u l t p r i o r i t y

13 ,−1 // group id i s chosen au t oma t i c a l l y

14 , baseTask // s e t base c l a s s to the dummy

15 ,0 ,0 ,0 // ignore t h r ead hand l e s and thread−s t a c k

16 , th r ead id s // save t h i s thread−i d (to be a b l e to c l o s e t h i s thread)

17) ;

18 i f (r e t v a l == 0) {
19 this−>open () ;

20 } else {
21 return −1;

22 }
23 }
24

25 return 0 ;

26 }

Listing 3.1: Internal implementation of the Start method

52 CHAPTER 3. THE SMARTSOFT KERNEL

The feature described above is used in ACE/SmartSoft as follows. A SmartComponent

initialises internally an instance of ACE_Task as the base task dummy. This instance is used
each time when a ManagedTask is started (as shown in line 14 of listing 3.1). If the compo-
nent now closes, the base task dummy is passed to the method cancel_task. Thus, each
ManagedTask is signalled to close, because it is associated with the base task dummy.

1 int ManagedTask : : svc ()

2 {
3 bool stop = fa lse ;

4

5 i f (this−>on entry () != 0) stop = true ;

6

7 while (! t e s t c a n c e l () && ! stop)

8 {
9 i f (this−>on execute () != 0) stop = true ;

10 }
11

12 return this−>on ex i t () ;

13 }

Listing 3.2: Internal implementation of the svc method

The closure signal is detected in a ManagedTask by calling the test_cancel method from
within the svc method inside of the task. This is illustrated in line 7 of listing 3.2. The
test_cancel method is provided by the ACE_Task class.

Summing up, the ManagedTask provides a platform independent task, whose cancellation
can be additionally managed by its superordinate component.

Chapter 4

The User View

The user view on ACE/SmartSoft comprises two different facets. The first one is of interest
to the administrator of ACE/SmartSoft who has to install the framework and who has to
manage the upgrades etc. The second one is related to the robotics user of ACE/SmartSoft

who wants to build and reuse components based on ACE/SmartSoft.

4.1 The Administrator View

• ACE/SmartSoft is hosted on sourceforge and can be reached via
http://smart-robotics.sourceforge.net/aceSmartSoft/

• the ACE/SmartSoft repository can be reached via
http://sourceforge.net/projects/smartsoft-ace/develop

• installation instructions can be found on the home page of ACE/SmartSoft on Source-
forge

• the ACE/SmartSoft core library contains a string identifying the release number of
the library. The ACE/SmartSoft release number consists of three entries according
to the standard scheme for software releases. Beginning with version number 1.7.2, the
following scheme is used:

– Version number 1.7.2 indicates the major release number 1, the minor release
number 7 and the revision number 2.

– Revision numbers just increment with patch releases, cleaning up source code etc.

– Minor release numbers increment when new features and new functionality has
been added.

– Major release numbers change when the overall structure has undergone modifica-
tions.

53

54 CHAPTER 4. THE USER VIEW

– All releases with the same major and minor number are fully interoperable.

4.2 The Robotics User View

• An extensive User Guide on ACE/SmartSoft can be found on
http://smart-robotics.sourceforge.net/aceSmartSoft/userguide.php

– it describes the various communication patterns and their usage

– it comprises various step-by-step instructions that cover the most often needed
solutions

∗ How to build a communication object?

∗ How to build a SmartSoft/ACE component?

∗ A practical SmartSoft/ACE component example

∗ How to port a SmartSoft/CORBA component?

• Details on the communication patterns are also documented by a Doxygen documenta-
tion generated out of the source code of ACE/SmartSoft. That documentation can
be found on http://smart-robotics.sourceforge.net/aceSmartSoft/doxygen/

• All generic documentation for the CORBA/SmartSoft release of SmartSoft also
applies to the ACE/SmartSoft release. The CORBA/SmartSoft release can be found
on http://smart-robotics.sourceforge.net/corbaSmartSoft/.

Bibliography

[1] Stephen D. Huston, James C. E. Johnson, and Umar Syyid. The ACE Programmer’s
Guide: Practical Design Patterns for Network and Systems Programming. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[2] C. Schlegel. Navigation and execution for mobile robots in dynamic environments: An
integrated approach. PhD thesis, University of Ulm, 2004.

[3] Douglas C. Schmidt, Hans Rohnert, Michael Stal, and Dieter Schultz. Pattern-Oriented
Software Architecture: Patterns for Concurrent and Networked Objects. John Wiley &
Sons, Inc., New York, NY, USA, 2000.

55

Investition in Ihre Zukunft
gefördert durch die Europäische Union Europäischer Fonds

für regionale Entwicklung
und das Land

Baden-Württemberg

Berichte des ZAFH Servicerobotik
ISSN 1868-3452

Herausgeber:
ZAFH Servicerobotik

Hochschule Ulm
D-89075 Ulm

http://www.zafh-servicerobotik.de/

